L4自动驾驶公司降维做L2前装量产,前景如何?

L4自动驾驶公司降维做L2前装量产,前景如何?

之前九章发过一篇文章《Robotaxi公司做L2前装量产,机遇与挑战并存》,近两年来,L4自动驾驶公司做L2逐渐为一个趋势,主要是过去这段时间内,Momenta实在是太火了。

2021年,Momenta完成两轮融资,累计金额超10亿美元,投资方也非常豪华,头部车企有上汽、通用、丰田、奔驰等,还有博世这样的国际Tier 1巨头,也接连拿到多个智能驾驶量产项目,这可把苦苦挣扎于商业化落地的L4公司“馋哭了”。

5月18日,轻舟智航官宣进入前装量产方向,还有几家L4公司,虽然没有官宣,也已经在密切地和车企接触,据说有些还拿到了量产项目订单。

世事就是如此让人难以预料。

这边厢,L2赛道,曾因为传感器数据质量不好(缺少激光雷达)和算力不足(只有几Tops),被L4 公司“看不上”,不过随着近两年硬件水平的迅猛发展,情况已大为改观。一方面,新车型开始搭载激光雷达,摄像头数量也越来越多;另一方面,随着像Orin、地平线J5这样的高算力芯片出现,算力已不再是瓶颈。近年来各车企也纷纷宣称,要用L4的技术架构和“硬件预埋”去实现L2+的功能。

那边厢,Robotaxi公司商业化遇阻,技术、成本、政策都限制了规模的扩张,规模不足不仅不能获取足够多的数据,也限制了成本进一步下降。

有Momenta“珠玉在前”,于是这些L4玩家准备进军L2市场,一方面通过商业化获得营收,另一方面也能获取更多数据。

这些从L4“降维”的玩家和坚持做L2“升维”的玩家相比,其优势和短板是什么?整个自动驾驶软件行业现在又遇到了什么问题?如何解决敏感的数据问题?会不会在车企自研成功后被“卸磨杀驴”?行业终局究竟会是怎样? 

带着这些疑问,九章智驾采访了元戎启行CEO周光、福瑞泰克CTO沈骏强、轻舟智航CTO侯聪、Momenta等一些行业内专家。

谈到对L4公司做L2的思考时,轻舟智航CTO侯聪说道:

“像Robotaxi这种开放道路L4场景,离最终商业化落地还有一定的距离,所以L4公司也一直在‍‍探索落地场景。随着这些年乘用车电动化、智能化的趋势越来越清晰,ADAS也开始往更复杂的城区道路场景发展,现在城区NOA的场景其实和L4已经非常接近了。

“硬件上也取得了很大的进展,从‍‍发展角度来看,L2和L4在趋同,这意味着L4公司去做传统L2业务,‍‍尽管可能在某些开发路线或功能定义上会有些差异,但在城区NOA场景下,功能相同点比差异点会更多一些,背后的‍‍研发体系、组织架构和测试开发方式也是‍‍高度重合的。”

除了上述原因外,还有一个原因是,Robotaxi的场景和L2的场景相同,算法复用成本低。“Robotaxi是城市道路,包含高速场景,这部分场景和L2场景是相同的,也是我们熟悉和擅长的,虽然适配有难度,但场景不变,适配工作量不会很大,”元戎启行CEO周光介绍道。

综上可以发现,L2的硬件的快速突破,加上L4和L2的场景趋同、数据可复用,也是L4公司进军L2重要考虑因素之一

一、L4公司的优势

一位自动驾驶测试专家说:“L4公司的算法能力肯定更强,特别是规控算法。”

业内也普遍认为这些L4公司的算法能力更强一些,毕竟L4的场景要比L2的场景复杂得多。

在降维做L2场景时,除了算法能力强,L4公司还有以下优势:

01

数据闭环能力更强

L4的场景中遇到的问题,比L2要复杂得多,这也要求L4公司要更好地利用数据闭环,挖掘长尾场景,迭代算法能力。

此外,在几年前,L4公司在认知和思维上也领先L2公司,L2公司创始人中硬件背景的较多,软件思维较弱,缺少数据思维,而L4公司的创始人普遍是算法背景,数据思维强大,从一开始就注重数据闭环,有先发优势。

一位算法专家也认为:“L4公司的优势,是通过数据迭代深度学习算法的能力,这一点,比那些基于规则的算法公司的能力要强很多。在未来数据量爆炸时候,L4公司的算法表现会更快地和友商拉开差距。”  

轻舟智航侯聪说:“L4公司在数据闭环和数据链路上投入的资源更多一些,而L2公司则较少,这是L4公司的优势。轻舟打造的仿真系统,对于数据的使用则更加高效,可以更多地‘榨取’数据价值。”

02

系统流畅性更好

当前量产和在开发的L2+算法架构中,普遍是通过状态机的切换来确定当前的智能驾驶功能是L2及以下功能(如ACC、AEB、LKA等)还是L2+功能(如高速NOA),在行驶过程中,系统需持续监测当前车辆的状态和周边环境,来决定当前的状态机,所以中间会涉及到不同系统之间的持续性切换。

一位自动驾驶公司项目管理专家认为:“如果L2和L2+的系统是几家供应商合作开发,那么状态机切换其实是双方合作完成,甚至是三方合作完成,无论是逻辑的合理性,还是运作的流畅性,都是不足的。而如果L2和L2+的系统全都交给一家L4公司来做,整套系统能够运转得更加流畅。”

03

性能天花板更高

L4系统的架构相比于传统L2的架构,更能适应城区的复杂工况,性能的天花板也更高。

元戎启行周光说:“L4公司做L2,有两种做法:第一种是依靠独立的团队和独立的代码,实现L2的具体细分功能,不过这会让L4的技术积累用不太上;第二种,就是降低L4级软件系统对传感器和算力的需求,把L4软件系统塞到 L2的硬件里面。不过第二种做法也是很难的,因为L4自动驾驶系统算力和功耗都很高,要放在车规级算力平台上,只有对算力和功耗优化特别好的公司才能做到。

“这样做虽然难,但是有很多好处,最大的好处是L4架构,其性能天花板和L2系统是不一样的。主机厂能够以一套L2的硬件成本,让用户可以以同样的价格,买到更加优质的服务,这就是元戎启行的优势。” 

二、L4公司工程能力的短板

诚然,L4公司在算法能力、数据闭环能力、系统流畅性和技术架构上限上占据了一些优势,但是也并不是全然没有短板,他们的集成能力和供应链管理相对较弱,不过最突出的短板还是工程能力。

2.1

工程能力的定义

行业内普遍认为L4公司量产经验少,工程能力较弱。那么,大家所谓的“工程能力”具体是指什么?

笔者查阅了很多资料,也和很多位行业专家交流,总结下来,在智能驾驶行业内,大家提到的“工程能力”,具体是指以下三点:

  1. 满足车规级要求,如安全性、稳定性、可靠性等;

  2. 能够满足功耗成本等目标;

  3. 满足1和2的基础上最优化算法功能和用户体验。

在这方面,不少L4自动驾驶公司是算法优先,追求算法的先进性,靠打榜或者发Paper来证明自己多牛,对算力功耗等考虑的较少;而L2公司则是工程优先,面向量产,要解决的问题也要繁琐得多,如成本、功耗和算力限制等,也有很多安全性、可靠性和流程上的要求。

一位细分赛道自动驾驶公司技术副总裁提到“工程化的理解”时说道,在技术验证阶段,一般会为了达到某些性能指标而不惜一切代价堆资源,“一颗orin不行上两颗ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值