交流群 | 进“传感器群/滑板底盘群/汽车基础软件群/域控制器群”请扫描文末二维码,添加九章小助手,务必备注交流群名称 + 真实姓名 + 公司 + 职位(不备注无法通过好友验证)
作者 | 张萌宇
在刚刚过去的CVPR会议上,作为国内唯一一家被邀请登台演讲的造车新势力,小鹏汽车向参会者介绍了小鹏汽车在国内量产辅助驾驶系统的经验。
作为小鹏汽车最新一代的感知架构,XNet在量产中发挥的作用不容小觑。
笔者有幸采访到小鹏汽车自动驾驶中心感知首席工程师 Patrick,更进一步得了解XNet的性能、架构,以及小鹏的自驾团队为搭建XNet所做的努力。
1. XNet实现的性能提升
XNet实现了感知结构的升级,拥有更好的性能,主要包括3个方面。
1.1
超强环境感知能力,实时生成“高精地图”
XNet可以根据周围环境实时构建“高精地图”。从上图我们可以看到,车辆正在经过一个环岛,图中显示的车道线不是来自于高精地图,而是来自于XNet的感知输出。XNet不光可以输出车道线,还有停止线、人行道、可行驶区域等。这是将来小鹏汽车应对无图场景,做高级别城市辅助驾驶的最核心的能力之一。
1.2
更强的360度感知,博弈更强、变道成功率更高
在上一代感知架构中,盲区问题很难解决。在最靠近本车的地方,尤其是车辆的下边界,感知系统的检测效果往往不好。XNet采用多相机多帧、前融合的感知方案,可以根据图像内的车身信息推测车辆在BEV视角下的3D位置信息,解决了相机上下视野受限的问题;还可以更加有效地同时融合多相机的信息,尤其是分节到两个相机视野中的物体,从而避免盲人摸象式的物体感知。
另外,输入包含时序信息的视频流后,XNet对近车物体的识别能力有大幅提升,可以更加稳定地检测到近车物体。那么,自动驾驶系统的博弈能力就更强,汽车变道的成功率更高。
1.3