曲线节点插入,会增加控制点数,原理是顺序将单个节点值拆入到定义的节点矢量中。比如:一条定义在原始节点矢量 上的k次B样条曲线为:
设 , 将t插入 T 中,形成新的节点矢量:
重新编号为
这个新的节点矢量 决定了一组新的B样条基函数 因此,原始的B样条曲线 p(t) 就可用这组新的B样条基函数和未知新控制点
通常将确定 的过程为“节点插入”。节点插入实质是改变了节点矢量,导致增加了一个新的控制点,而曲线在几何和参数方面均不发生改变。新控制点的计算公式:
式中,
式中,i 为节点插入原节点区间的左端节点的下标序号,r表示所插节点t在原节点矢量
中的重复度。
计算插入后的新的控制点,
例题:对于三次B样条曲线,原控制点为
原节点矢量为
现在插入节点 t=0.5 。在保持曲线形状不变的情况下,试计算插入节点后的新控制点。
由题意知:
t=0.5, , 则 i=5, 因为 k=3, r=0, n=7, 所以 i-k=2, i-r+1=6, n+1=8。根据新插入控制点的计算公式有:
以上、新的控制点计算完毕
曲线节点插入
文章讨论了在B样条曲线上插入节点时,如何通过调整节点矢量来增加控制点,保持曲线几何和参数不变,以及如何计算新插入节点后的新控制点,以三次B样条为例给出具体步骤。
摘要由CSDN通过智能技术生成