B 样条曲线

一、B 样条曲线的定义和性质

p p p 次 B 样条曲线的定义为
C ( u ) = ∑ i = 0 n N i , p ( u ) P i , a ≤ u ≤ b (1) \pmb C(u)=\sum_{i=0}^nN_{i,p}(u)\pmb P_i,\quad a\leq u\leq b\tag{1} C(u)=i=0nNi,p(u)Pi,aub(1)

这里 P i \pmb P_i Pi 是曲线的控制点 { N i , p ( u ) } \{N_{i,p}(u)\} {Ni,p(u)} 是定义在非周期(并且非均匀)节点矢量
U = ( a , ⋯   , a ⏟ p + 1 , u p + 1 , ⋯   , u m − p − 1 , b , ⋯   , b ⏟ p + 1 ) U=\bigg(\underbrace{a,\cdots,a}_{p+1},u_{p+1},\cdots,u_{m-p-1},\underbrace{b,\cdots,b}_{p+1}\bigg) U=(p+1 a,,a,up+1,,ump1,p+1 b,,b)

(包含 m + 1 m+1 m+1 个节点)上的 p p p 次 B 样条基函数。除非特别声明,通常取 a = 0 , b = 1 a=0,b=1 a=0,b=1。由 P i \pmb P_i Pi 构成的多边形称为控制多边形

对于固定的 u u u 值,计算 B 样条曲线上的对应点需要三步:

  1. 找到 u u u 所在的节点区间;
  2. 计算非零的基函数;
  3. 将非零基函数的值与相应的控制点相乘,再求和。

例1. U = { 0 , 0 , 0 , 1 , 2 , 3 , 4 , 4 , 5 , 5 , 5 } ,    u = 5 2 ,    p = 2 \quad U=\{0,0,0,1,2,3,4,4,5,5,5\},\ \ u=\dfrac{5}{2},\ \ p=2 U={0,0,0,1,2,3,4,4,5,5,5},  u=25,  p=2
此时, u ∈ [ u 4 , u 5 ) u\in[u_4,u_5) u[u4,u5),则
N 2 , 2 ( 5 2 ) = 1 8 , N 3 , 2 ( 5 2 ) = 6 8 , N 4 , 2 ( 5 2 ) = 1 8 N_{2,2}\Big(\dfrac{5}{2}\Big)=\frac{1}{8},\quad N_{3,2}\Big(\dfrac{5}{2}\Big)=\frac{6}{8},\quad N_{4,2}\Big(\dfrac{5}{2}\Big)=\frac{1}{8} N2,2(25)=81,N3,2(25)=86,N4,2(25)=81

与相应的控制点相乘并求和得
C ( 5 2 ) = 1 8 P 2 + 6 8 P 3 + 1 8 P 4 \pmb C\Big(\dfrac{5}{2}\Big)=\frac{1}{8}\pmb P_2+\frac{6}{8}\pmb P_3+\frac{1}{8}\pmb P_4 C(25)=81P2+86P3+81P4

具体算法如下:

def CurvePoint(p, U, P, u):
    """
    计算 B 样条曲线上的点
    :param p: 基函数次数
    :param U: 节点矢量
    :param P: 控制点
    :param u: 固定值
    :return: 固定值 u 在 B 样条曲线上的对应值
    """
    span = FindSpan(p, u, U)
    N = BasisFuns(span, u, p, U)
    C = 0.0
    for i in range(p+1):
        C = C + N[i] * P[span - p + i]
    return C

二、B 样条曲线的导矢

C ( k ) ( u ) \pmb C^{(k)}(u) C(k)(u) 表示 C ( u ) \pmb C(u) C(u) k k k 阶导矢。对于固定的 u u u,我们可以通过计算基函数的 k k k 阶导数得到 C ( k ) ( u ) \pmb C^{(k)}(u) C(k)(u)。特别地,有
C ( k ) ( u ) = ∑ i = 0 n N i , p ( k ) ( u ) P i \pmb C^{(k)}(u)=\sum_{i=0}^nN_{i,p}^{(k)}(u)\pmb P_i C(k)(u)=i=0nNi,p(k)(u)Pi

例2. p = 2 , U = { 0 , 0 , 0 , 1 , 2 , 3 , 4 , 4 , 5 , 5 , 5 } , u = 5 2 \quad p=2,U=\{0,0,0,1,2,3,4,4,5,5,5\},u=\frac{5}{2} p=2,U={0,0,0,1,2,3,4,4,5,5,5},u=25
N 2 , 2 ′ ( 5 2 ) = 0 − 2 3 − 1 1 2 = − 1 2 N 3 , 2 ′ ( 5 2 ) = 2 3 − 1 1 2 − 2 4 − 2 1 2 = 0 N 4 , 2 ′ ( 5 2 ) = 2 4 − 2 1 2 − 0 = 1 2 \begin{aligned} &N^\prime_{2,2}\Big(\frac{5}{2}\Big)=0-\frac{2}{3-1}\frac{1}{2}=-\frac{1}{2}\\[2ex] &N^\prime_{3,2}\Big(\frac{5}{2}\Big)=\frac{2}{3-1}\frac{1}{2}-\frac{2}{4-2}\frac{1}{2}=0\\[2ex] &N^\prime_{4,2}\Big(\frac{5}{2}\Big)=\frac{2}{4-2}\frac{1}{2}-0=\frac{1}{2} \end{aligned} N2,2(25)=031221=21N3,2(25)=3122142221=0N4,2(25)=422210=21

于是有
C ′ ( 5 2 ) = − 1 2 P 2 + 1 2 P 4 \pmb C^\prime\Big(\frac{5}{2}\Big)=-\frac{1}{2}\pmb P_2+\frac{1}{2}\pmb P_4 C(25)=21P2+21P4

以下给出对于固定的 u u u,计算 B 样条曲线上对应的点及其直到 d d d 阶(包括 d d d 阶)导矢的算法。我们允许 d > p d>p d>p,虽然(对非有理曲线而言)这些导矢都为零;但是,这些导矢对有理曲线是必要的。算法的输入是 u , d u,d u,d 以及下面的一些数据定义的 B 样条曲线

n n n:控制点的最大下标(控制点的个数是 n + 1 n+1 n+1);
p p p:曲线的次数;
U U U:节点矢量;
P P P:控制点数组。

算法的输出是数组 CK

def CurveDerivsAlg(n, p, U, P, u, d):
    """
    计算固定的 u 时 B 样条曲线上对应的点及其 d 阶导矢
    :param n: 控制点的最大下标(控制点的个数是 n+1)
    :param p: 曲线的次数
    :param U: 节点矢量
    :param P: 控制点数组
    :param u: 固定点
    :param d: 导矢阶数
    :return: 数组 CK
    """
    du = min(d, p)
    CK = np.zeros(d+1)
    for k in range(p+1, d+1):
        CK[k] = 0.0
    span = FindSpan(p, u, U)
    nders = DersBasisFuns(span, u, p, n, U)
    for k in range(du+1):
        CK[k] = 0.0
        for j in range(p+1):
            CK[k] = CK[k] + nders[k, j] * P[span-p+j]
    
    return CK
  • 23
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值