Python反向传播导图

69 篇文章 0 订阅
13 篇文章 0 订阅

🎯要点

  1. 矩阵式梯度下降
  2. 人工神经网络预测
  3. 损失函数梯度下降
  4. 梯度优化三输入和一输出神经网络
  5. 并行坐标可视化传播网络
  6. 森林火灾场景特征算法学习
  7. 前馈神经网络随机梯度优化,动量随机梯度优化和自适应矩估计
  8. 多回归自动微分行驶探测器模型
  9. 分类给定点颜色
    在这里插入图片描述

Python反向传播计算

反向传播是一种用于训练人工神经网络的有效算法,特别是在前馈神经网络中。通过确定应调整哪些权重和偏差,有助于最小化成本函数。在每个时期,模型都会通过调整权重和偏差进行学习,通过向下移动到误差的梯度来最小化损失。因此,它涉及两种最流行的优化算法,例如梯度下降或随机梯度下降。计算反向传播算法中的梯度有助于最小化成本函数,并且可以通过使用微积分中称为链式法则的数学规则来导航神经网络的复杂层来实现。
在这里插入图片描述

  • h ( 1 , 1 ) h_{(1,1)} h(1,1) ~ h ( 2 , 3 ) h_{(2,3)} h(2,3) 之间是隐藏层,O 是输出层

反向传播算法通过两个不同的通道工作,它们是:前传、后传。

假设神经元具有 sigmoid 激活函数,在网络上执行前向和后向传递。同时假设 y 的实际输出为 0.5,学习率为 1。现在使用反向传播算法执行反向传播。
在这里插入图片描述
实现前传:

在开始计算前向传播之前,我们需要知道两个公式: a j = ∑ ( w i , j ∗ x i ) a_j=\sum\left(w_i, j * x_i\right) aj=(wi,jxi)

  • a j a_{ j } aj 是每个节点的所有输入和权重的加权和,
  • wi, j j j - 表示与 j th  j^{\text {th }} jth  输入到 i th  i ^{\text {th }} ith  神经元相关的权重。
  • x i x_i xi - 表示 j th  j^{\text {th }} jth  输入的值

y j = F ( a j ) = 1 1 + e − a j , y i − y_j=F\left(a_j\right)=\frac{1}{1+e^{-a j}},y _{ i }- yj=F(aj)=1+eaj1yi为输出值,F表示激活函数【sigmoid激活函数为此处使用),它将加权和转换为输出值。为了计算前向传播,我们需要计算 y 3 、 y 4 y_3、y_4 y3y4 y 5 y_5 y5 的输出。

如上图中, y 3 y_3 y3 h 1 h_1 h1 y 4 y_4 y4 h 2 h_2 h2 y 5 y_5 y5 O 3 O_3 O3

a j = ∑ ( w i , j ∗ x i ) a_j=\sum\left(w_{i, j} * x_i\right) aj=(wi,jxi) 为了找到 y 3 y_3 y3,我们需要考虑它的传入边及其权重和输入。这里的传入边来自 X 1 X_1 X1 X 2 X_2 X2

h 1 h_1 h1节点, a 1 = ( w 1 , 1 x 1 ) + ( w 2 , 1 x 2 ) = ( 0.2 ∗ 0.35 ) + ( 0.2 ∗ 0.7 ) = 0.21 \begin{aligned} a_1 & =\left(w_{1,1} x_1\right)+\left(w_{2,1} x_2\right) \\ & =(0.2 * 0.35)+(0.2 * 0.7) \\ & =0.21\end{aligned} a1=(w1,1x1)+(w2,1x2)=(0.20.35)+(0.20.7)=0.21

一旦我们计算了 a 1 a_1 a1 值,我们现在可以继续查找 y 3 y_3 y3 值:
y j = F ( a j ) = 1 1 + e − a j y 3 = F ( 0.21 ) = 1 1 + e − 0.21 y 3 = 0.56 \begin{aligned} & y_j=F\left(a_j\right)=\frac{1}{1+e^{-a j}} \\ & y_3=F(0.21)=\frac{1}{1+e^{-0.21}} \\ & y_3=0.56 \end{aligned} yj=F(aj)=1+eaj1y3=F(0.21)=1+e0.211y3=0.56
同样,在 h 2 h_2 h2 处查找 y 4 y_4 y4 的值,在 O 3 O_3 O3 处查找 y 5 y_5 y5 的值,
a 2 = ( w 1 , 2 ∗ x 1 ) + ( w 2 , 2 ∗ x 2 ) = ( 0.3 ∗ 0.35 ) + ( 0.3 ∗ 0.7 ) = 0.315 y 4 = F ( 0.315 ) = 1 1 + e − 0.315 a 3 = ( w 1 , 3 ∗ y 3 ) + ( w 2 , 3 ∗ y 4 ) = ( 0.3 ∗ 0.57 ) + ( 0.9 ∗ 0.59 ) = 0.702 y 5 = F ( 0.702 ) = 1 1 + e − 0.7012 = 0.67 \begin{aligned} & a 2=\left(w_{1,2} * x_1\right)+\left(w_{2,2} * x_2\right)=(0.3 * 0.35)+(0.3 * 0.7)=0.315 \\ & y_4=F(0.315)=\frac{1}{1+e^{-0.315}} \\ & a 3=\left(w_{1,3} * y_3\right)+\left(w_{2,3} * y_4\right)=(0.3 * 0.57)+(0.9 * 0.59)=0.702 \\ & y_5=F(0.702)=\frac{1}{1+e^{-0.7012}}=0.67 \end{aligned} a2=(w1,2x1)+(w2,2x2)=(0.30.35)+(0.30.7)=0.315y4=F(0.315)=1+e0.3151a3=(w1,3y3)+(w2,3y4)=(0.30.57)+(0.90.59)=0.702y5=F(0.702)=1+e0.70121=0.67
请注意,我们的实际输出是 0.5,但我们得到的是 0.67。为了计算误差,我们可以使用以下公式:

误差 j = y 目标 − y 5 _j=y_{\text {目标}}-y_5 j=y目标y5,误差 = 0.5 – 0.67 =-0.17。使用这个误差值,我们将进行反向传播。

代码实现

import numpy as np

class NeuralNetwork:
    def __init__(self, input_size, hidden_size, output_size):
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.output_size = output_size

        # Initialize weights
        self.weights_input_hidden = np.random.randn(self.input_size, self.hidden_size)
        self.weights_hidden_output = np.random.randn(self.hidden_size, self.output_size)

        # Initialize the biases
        self.bias_hidden = np.zeros((1, self.hidden_size))
        self.bias_output = np.zeros((1, self.output_size))

    def sigmoid(self, x):
        return 1 / (1 + np.exp(-x))

    def sigmoid_derivative(self, x):
        return x * (1 - x)

    def feedforward(self, X):
        # Input to hidden
        self.hidden_activation = np.dot(X, self.weights_input_hidden) + self.bias_hidden
        self.hidden_output = self.sigmoid(self.hidden_activation)

        # Hidden to output
        self.output_activation = np.dot(self.hidden_output, self.weights_hidden_output) + self.bias_output
        self.predicted_output = self.sigmoid(self.output_activation)

        return self.predicted_output

    def backward(self, X, y, learning_rate):
        # Compute the output layer error
        output_error = y - self.predicted_output
        output_delta = output_error * self.sigmoid_derivative(self.predicted_output)

        # Compute the hidden layer error
        hidden_error = np.dot(output_delta, self.weights_hidden_output.T)
        hidden_delta = hidden_error * self.sigmoid_derivative(self.hidden_output)

        # Update weights and biases
        self.weights_hidden_output += np.dot(self.hidden_output.T, output_delta) * learning_rate
        self.bias_output += np.sum(output_delta, axis=0, keepdims=True) * learning_rate
        self.weights_input_hidden += np.dot(X.T, hidden_delta) * learning_rate
        self.bias_hidden += np.sum(hidden_delta, axis=0, keepdims=True) * learning_rate

    def train(self, X, y, epochs, learning_rate):
        for epoch in range(epochs):
            output = self.feedforward(X)
            self.backward(X, y, learning_rate)
            if epoch % 4000 == 0:
                loss = np.mean(np.square(y - output))
                print(f"Epoch {epoch}, Loss:{loss}")

X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([[0], [1], [1], [0]])

nn = NeuralNetwork(input_size=2, hidden_size=4, output_size=1)
nn.train(X, y, epochs=10000, learning_rate=0.1)

# Test the trained model
output = nn.feedforward(X)
print("Predictions after training:")
print(output)

输出:

Epoch 0, Loss:0.36270360966344145
Epoch 4000, Loss:0.005546947165311874
Epoch 8000, Loss:0.00202378766386817
Predictions after training:
[[0.02477654]
 [0.95625286]
 [0.96418129]
 [0.04729297]]

👉更新:亚图跨际

  • 7
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Python中实现反向传播的方法是通过计算网络的梯度,然后使用这些梯度来更新网络的参数。在神经网络中,反向传播主要包括两个步骤:计算参数的梯度和传递梯度到前一层。 在计算参数的梯度方面,我们可以使用链式法则来计算每个参数对损失函数梯度。具体来说,我们可以根据损失函数对输出的梯度来计算最后一层的参数梯度,然后根据该层的输出和参数梯度计算前一层的参数梯度,以此类推,直到计算到第一层的参数梯度。 在传递梯度到前一层方面,我们可以使用链式法则来计算每一层的输入梯度。具体来说,我们可以根据该层的输出和参数梯度计算该层的输入梯度,然后将该输入梯度传递到前一层,以此类推,直到传递到第一层的输入梯度。 在实际编程中,我们可以通过定义每一层的反向传播方法来实现反向传播。在每个层的反向传播方法中,我们需要根据前向传播过程中保存的中间结果来计算参数梯度和输入梯度,并将它们保存起来以便后续使用。 以下是一个示例代码,展示了如何在Python中实现简单的神经网络的反向传播: ``` class MyNeuralNetwork: def __init__(self): # 初始化网络参数 self.W1 = None self.b1 = None self.W2 = None self.b2 = None # ... def forward(self, x): # 前向传播的实现 # ... def backward(self, dout): # 反向传播的实现 # 计算第二层的参数梯度和输入梯度 dW2 = ... db2 = ... dx2 = ... # 计算第一层的参数梯度和输入梯度 dW1 = ... db1 = ... dx1 = ... # 更新参数 self.W2 -= learning_rate * dW2 self.b2 -= learning_rate * db2 self.W1 -= learning_rate * dW1 self.b1 -= learning_rate * db1 return dx1 # 创建神经网络实例 network = MyNeuralNetwork() # 前向传播 x = ... y = network.forward(x) # 反向传播 dout = ... dx = network.backward(dout) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值