如何在本地使用Ollama运行开源LLMs

本文详细介绍了如何下载和使用Ollama,一个允许开发者与开源大型语言模型(LLMs)如LLaMA2和LLaVA在本地设备上进行交互的工具。文章提供了步骤说明和实例,展示了如何与Meta的文本模型和多模态模型进行互动。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文将指导您下载并使用Ollama,在您的本地设备上与开源大型语言模型(LLMs)进行交互的强大工具。

与像ChatGPT这样的闭源模型不同,Ollama提供透明度和定制性,使其成为开发人员和爱好者的宝贵资源。

我们将探索如何下载Ollama并与两个令人兴奋的开源LLM模型进行交互:Meta的基于文本的模型LLaMA 2和LLaVA,一个可以处理文本和图像的多模态模型。

(本文内容参考:java567.com)

如何下载Ollama

要下载Ollama,请访问Ollama的官方网站并点击下载按钮。

在这里插入图片描述

Ollama支持3种不同的操作系统,Windows版本处于预览模式。

在这里插入图片描述

您可以根据您的操作系统选择可执行文件,在成功下载可执行文件后,运行可执行文件进行安装。

对于Linux用户,您需要执行屏幕上显示的命令,而不是下载可执行文件。

如何运行Ollama

为了向您展示在本地使用开源LLMs的强大功能,我将用不同的开源模型和不同的用例展示多个示例。这将帮助您轻松使用未来的任何开源LLM模型。

那么,让我们从第一个示例开始吧!

如何

### 如何在本地环境中配置和连接 Ollama #### 安装和设置 Ollama 为了成功连接到本地运行Ollama 服务,首先需要完成其安装与基础配置。这一步骤涉及下载并启动 Ollama 的二进制文件,并验证它是否正常工作于默认端口上[^2]。 #### 设置 LangChain 运行环境 一旦 Ollama 成功安装完毕,在 Python 环境下可以利用 LangChain 库进一步简化对其 API 接口的操作流程。通过 LangChain 提供的功能模块可以直接加载预训练好的 LLaMA2 模型实例化对象用于后续推理任务处理之中。 以下是基于 Python 实现的一个简单例子: ```python from langchain.llms import Ollama # 初始化Ollama模型 ollama_model = Ollama(model="llama2") # 测试生成文本功能 response = ollama_model("你好世界") print(response) ``` 这段代码展示了如何创建一个名为 `ollama_model` 的变量来代表我们所选用的具体版本号为 "llama2" 的大型语言模型(LLM),之后向该模型提问 “你好世界”,最后打印返回的结果字符串形式表示的回答内容出来显示给用户查看。 #### VSCode 中 Cline 插件配置说明 当希望借助 Visual Studio Code 编辑器内的扩展插件——Cline 来实现对已部署好于本机上的 DeepSeek R1/V3 或者其他支持类型的开源大模型(如通义千问 Qwen-2.5)进行交互操作的时候,则需要注意如下事项: 对于 Base URL 字段而言,默认情况下会自动生成类似于 http://localhost:11434 这样的地址作为提示信息呈现给开发者参考之用;但实际上当你初次打开对话窗口时此输入框内部应该是处于空白状态等待手动指定确切的服务定位路径才对[^3]。 因此如果确认自己的 Ollama 服务器确实按照常规惯例监听着上述标准网络位置的话,那么完全可以忽略掉这个选项保持原样不变即可正常使用各项特性功能。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值