【卷积神经网络】(一)LeNet

本文介绍了LeNet-5神经网络模型的历史、结构,以及与现代CNN的区别。重点展示了如何在Pytorch框架下实现LeNet,并用Fashion-MNIST数据集进行训练和评估。
摘要由CSDN通过智能技术生成

【卷积神经网络】(一)LeNet

1. 模型简介

LeNet 在1998 年被提出,是进行手写数字识别的网络。它有连续的卷积层和池化层,最后经全连接层输出结果。
LeNet 的 架构如下图所示:

在这里插入图片描述

一个手写数字在LeNet中的数据流如下图所示:
在这里插入图片描述

如上图所示,整个LeNet 包括 特征图提取,信息映射两个阶段。
每个卷积块即 “Convolutiion-sigmoid-AvePooling”连接。每个卷积层使用5*5的卷积核和一个sigmoid激活函数。
每个卷积层使⽤5 × 5卷积核和⼀个sigmoid激活函数。这些层将输⼊映射到多个⼆维特征输出,通常同时增加通道的数量。第⼀卷积层有6个输出通道,⽽第⼆个卷积层有16个输出通道。每个2 × 2池操作(步幅2)通过空间下采样将维数减少4倍。卷积的输出形状由批量⼤⼩、通道数、⾼度、宽度决定。
为了将卷积块的输出传递给稠密块,我们必须在⼩批量中展平每个样本。换⾔之,我们将这个四维输⼊转换成全连接层所期望的⼆维输⼊。这⾥的⼆维表⽰的第⼀个维度索引⼩批量中的样本,第⼆个维度给出每个样本的平⾯向量表⽰。LeNet的稠密块有三个全连接层,分别有120、84和10个输出。因为我们在执⾏分类任务,所以输出层的10维对应于最后输出结果的数量。

2. 同“现在的CNN”相比,LeNet有几个不同点:

  • 激活函数:LeNet使用sigmoid函数。而现在的CNN中主要使用ReLU函数
  • 原始的LeNet中使用子采样(subsampling),即平均池化。缩小中间数据的大小,而现在的CNN中Max池化是主流。

3. 基于Pytorch框架的LeNet的实现

构建的LeNet 架构如下:
在这里插入图片描述

3.0 数据集简介

Fashion-MNIST数据集。
本案例中的模型的训练和测试的数据集来自于del函数库中提供的Fashion-MNIST数据集。
Fashion MNIST/服饰数据集包含70000张灰度图像,其中包含60,000个示例的训练集和10,000个示例的测试集,每个示例都是一个28x28灰度图像,分为以下几类:

LabelDescription
0T恤(T-shirt/top)
1裤子(Trouser)
2套头衫(Pullover)
3连衣裙(Dress)
4外套(Coat)
5凉鞋(Sandal)
6衬衫(Shirt)
7运动鞋(Sneaker)
8包(Bag)
9靴子(Ankle boot)

使用Python加载数据(需要NumPy)

import mnist_reader
X_train, y_train = mnist_reader.load_mnist('data/fashion', kind='train')
X_test, y_test = mnist_reader.load_mnist('data/fashion', kind='t10k')

3.1 构建模型

import torch
from torch import nn
from d2l import torch as d2l
										   #Input:[1,1,28,28] 
net = nn.Sequential(
# 1.第一个卷积块
nn.Conv2d(1, 6, kernel_size=5, padding=2), # [1, 6, 28, 28]
nn.Sigmoid(), 							   # [1, 6, 28, 28]
nn.AvgPool2d(kernel_size=2, stride=2),     # [1, 6, 14, 14]
# 2.第二个卷积快
nn.Conv2d(6, 16, kernel_size=5), 		   #[1, 16, 10, 10]
nn.Sigmoid(),#[1, 16, 10, 10]
nn.AvgPool2d(kernel_size=2, stride=2),     #[1, 16, 5, 5]
# 展开
nn.Flatten(),							   # [1, 400]
# dense1
nn.Linear(16 * 5 * 5, 120),				   # [1, 120]
nn.Sigmoid(),				  			   # [1, 120]
# dense2
nn.Linear(120, 84), 				       # [1, 84]
nn.Sigmoid(), 				               # [1, 84]
# dense3
nn.Linear(84, 10)) 				           # [1, 10]

3.2 训练模型

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)
def evaluate_accuracy_gpu(net, data_iter, device=None): #@save
"""使⽤GPU计算模型在数据集上的精度"""
	if isinstance(net, nn.Module):
		net.eval() # 设置为评估模式
		if not device:
			device = next(iter(net.parameters())).device
# 正确预测的数量,总预测的数量
	metric = d2l.Accumulator(2)
	with torch.no_grad():
		for X, y in data_iter:
			if isinstance(X, list):
				# BERT微调所需的(之后将介绍)
				X = [x.to(device) for x in X]
			else:
				X = X.to(device)
			y = y.to(device)
			metric.add(d2l.accuracy(net(X), y), y.numel())
	return metric[0] / metric[1]

在进行正向和反向传播之前,我们需要将每一小批量数据移动到我们指定的设备(例如GPU)上。
如下所示
由于我们将实现多层神经网络,因此我们将主要使用高级API。
以下训练函数假定从高级API创建的模型作为输入,并进行相应的优化。
我们使用Xavier随机初始化模型参数。与全连接层一样,我们使用交叉熵损失函数和小批量随机梯度下降。

#@save
def train(net, train_iter, test_iter, num_epochs, lr, device):
	"""⽤GPU训练模型(在第六章定义)"""
	def init_weights(m):
		if type(m) == nn.Linear or type(m) == nn.Conv2d:
			nn.init.xavier_uniform_(m.weight)
		net.apply(init_weights)
		print('training on', device)
		net.to(device)
		optimizer = torch.optim.SGD(net.parameters(), lr=lr)
		loss = nn.CrossEntropyLoss()
		animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
		legend=['train loss', 'train acc', 'test acc'])
		timer, num_batches = d2l.Timer(), len(train_iter)
		for epoch in range(num_epochs):
		# 训练损失之和,训练准确率之和,样本数
			metric = d2l.Accumulator(3)
			net.train()
			for i, (X, y) in enumerate(train_iter):
				timer.start()
				optimizer.zero_grad()
				X, y = X.to(device), y.to(device)
				y_hat = net(X)
				l = loss(y_hat, y)
				l.backward()
				optimizer.step()
				with torch.no_grad():
					metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
				timer.stop()
				train_l = metric[0] / metric[2]
				train_acc = metric[1] / metric[2]
				if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
					animator.add(epoch + (i + 1) / num_batches,
					(train_l, train_acc, None))
			test_acc = evaluate_accuracy_gpu(net, test_iter)
			animator.add(epoch + 1, (None, None, test_acc))
			print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '
			f'test acc {test_acc:.3f}')
			print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
			f'on {str(device)}')

训练和评估LeNet-5模型

lr, num_epochs = 0.9, 10
train(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

结果如下:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值