【卷积神经网络】(五)GoogLeNet

本文介绍了GoogLeNet在2014年ImageNet竞赛中的表现,着重讨论了其Inception块设计,包括使用不同尺寸滤波器的并行路径和1×1卷积的优化。GoogLeNet通过深度和宽度的结合,提升了模型性能。
摘要由CSDN通过智能技术生成

【卷积神经网络】(五)GoogLeNet

1.简介

在2014年的ImageNet图像识别挑战赛中,⼀个名叫GoogLeNet (Szegedy et al., 2015)的⽹络架构⼤放异彩。
GoogLeNet吸收了NiN中串联⽹络的思想,并在此基础上做了改进。
这篇论⽂的⼀个重点是解决了什么样⼤⼩的卷积核最合适的问题。毕竟,以前流⾏的⽹络使⽤⼩到1 × 1,⼤到11 × 11的卷积核。
GoogLeNet的网络结构如下图所示。图中的矩形表示卷积层,池化层等。
在这里插入图片描述
GoogLeNet的特征是,网络不仅在纵向上有深度,在横向上也有深度(广度)。
GoogLeNet同样也是基于块的设计。它的块被称为Inception块:
在这里插入图片描述

如上图所示,Inception结构使用了多个大小不同的滤波器(和池化),最后再合并它们的结果。
Inception块由四条并⾏路径组成。前三条路径使⽤窗⼝⼤⼩为1 × 1、3 × 3和5 × 5的卷积层,
从不同空间⼤⼩中提取信息。中间的两条路径在输⼊上执⾏1 × 1卷积,以减少通道数,从⽽降低模型的复杂性。第四条路径使⽤3 × 3最⼤汇聚层,然后使⽤1 × 1卷积层来改变通道数。这四条路径都使⽤合适的填充来使输⼊与输出的⾼和宽⼀致,最后我们将每条线路的输出在通道维度上连结,并构成Inception块的输出。
在Inception块中,通常调整的超参数是每层输出通道数。
GoogLeNet的特征就是将这个Inception结构用作一个构件(构成元素)。此外,在GoogLeNet中,很多地方都使用了大小为1 × 1的滤波器的卷积层。这个1 × 1的卷积运算通过在通道方向上减小大小,有助于减少参数和实现高速化处理。

2.构建一个GoogLeNet并训练

在这里插入图片描述

2.1 模型构建

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
class Inception(nn.Module):
# c1--c4是每条路径的输出通道数
def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):
super(Inception, self).__init__(**kwargs)
# 线路1,单1x1卷积层
self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)
# 线路2,1x1卷积层后接3x3卷积层
self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)
self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
# 线路3,1x1卷积层后接5x5卷积层
self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)
self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
# 线路4,3x3最⼤汇聚层后接1x1卷积层
self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)
def forward(self, x):
p1 = F.relu(self.p1_1(x))
p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
p4 = F.relu(self.p4_2(self.p4_1(x)))
# 在通道维度上连结输出
return torch.cat((p1, p2, p3, p4), dim=1)

## 块1. 7*7 卷积层 + RelU + 3*3最大汇聚
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

## 块2. 1*1卷积层 + RelU + 3*3卷积层 + RelU+ 3*3最大汇聚
b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
nn.ReLU(),
nn.Conv2d(64, 192, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))


## 块3.
b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
Inception(256, 128, (128, 192), (32, 96), 64),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

## 块4.
b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
Inception(512, 160, (112, 224), (24, 64), 64),
Inception(512, 128, (128, 256), (24, 64), 64),
Inception(512, 112, (144, 288), (32, 64), 64),
Inception(528, 256, (160, 320), (32, 128), 128),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
Inception(832, 384, (192, 384), (48, 128), 128),
nn.AdaptiveAvgPool2d((1,1)),
nn.Flatten())
net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))

2.1 训练

lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值