转载于:https://blog.csdn.net/tengfei461807914/article/details/77435917
目标:
使用模板匹配在图像中查找目标
学习函数cv2.matchTemplate(),cv2.minMaxLoc()
原理:
模板匹配是在一副图像中寻找模板图像的方法。opencv中有函数cv2.matchTemplate()来实现。与2D卷积一样,它也是用模板图像在输入图像上滑动(类似窗口),在每一个位置对模板图像和输入图像的窗口区域进行匹配。具体原理与直方图的反向投影类似。
opencv提供了几种不同的匹配方法。
函数文档
- CV_TM_SQDIFF 平方差匹配法:该方法采用平方差来进行匹配;最好的匹配值为0;匹配越差,匹配值越大。
- CV_TM_SQDIFF_NORMED 相关匹配法:该方法采用乘法操作;数值越大表明匹配程度越好[0~1]之间。
- CV_TM_CCORR 相关系数匹配法:1表示完美的匹配;-1表示最差的匹配。
- CV_TM_CCORR_NORMED 归一化平方差匹配法
- CV_TM_CCOEFF 归一化相关匹配法
- CV_TM_CCOEFF_NORMED 归一化相关系数匹配法
每种方法对应不同的计算公式。
比對方法
I 表示 image, T 表示 template, R 表示 result
如果输入图像大小是W×H,模板大小是w×h,输出结果的大小事(W-w+1,H-h+1)。得到此结果后可以使用函数cv2.minMaxLoc()来找到其中的最小值和最大值的位置。第一个值为矩形左上角的位置,(w,h)是模板矩形的宽度和高度。矩形就是模板区域。
如果使用的比较方法是 cv2.TM_SQDIFF,那么最小值对应的位置是匹配区域。
使用opencv进行模板匹配
来个有意思的
在一堆凤姐里面找到蔡依林(最后一排第三个,如果我眼睛没瞎)
截个图,把蔡依林截出来
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('16.jpg',0)
print(img.shape)
img2 = img.copy()
template = cv2.imread('166.jpg',0)
w, h = template.shape[::-1]
# All the 6 methods for comparison in a list
methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR',
'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
for meth in methods:
img = img2.copy()
method = eval(meth)
# Apply template Matching
res = cv2.matchTemplate(img,template,method)
# print(res.shape)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)#找到最大值和最小值
print(cv2.minMaxLoc(res))
# If the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimum
if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
top_left = min_loc
else:
top_left = max_loc
bottom_right = (top_left[0] + w, top_left[1] + h)
cv2.rectangle(img,top_left, bottom_right, 255, 2)
plt.subplot(121),plt.imshow(res,cmap = 'gray')
plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img,cmap = 'gray')
plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
plt.suptitle(meth)
plt.show()
结果不是很理想,居然找不准。看来凤姐和蔡依林长的确实不太好分辨-_-
多对象匹配
目标对象出现了很多次,怎么找?
cv.imMaxLoc()函数只给出最大值和最小值,现在使用阈值来寻找。
import cv2
import numpy as np
from matplotlib import pyplot as plt
img_rgb = cv2.imread('17.jpg')
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread('177.jpg',0)
w, h = template.shape[::-1]
res = cv2.matchTemplate(img_gray,template,cv2.TM_CCOEFF_NORMED)
threshold = 0.25
loc = np.where( res >= threshold)
for pt in zip(*loc[::-1]):
cv2.rectangle(img_rgb, pt, (pt[0] + w, pt[1] + h), (0,0,255), 2)
cv2.imwrite('res.png',img_rgb)
本想找到除了蔡依林以外的所有凤姐~ 结果….