class 5 卷积神经网络

48 篇文章 2 订阅
11 篇文章 0 订阅

class 5 卷积神经网络


卷积计算过程

全连接NN:每个神经元与前后相邻层的每一个神经元都有连接关系,输入是特征,输出是预测结果。

参数个数: ∑ 前 层 ( 前 层 ∗ 后 层 + 后 层 ) \sum_{前层}(前层*后层+后层) (+)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zh9xK874-1605844850992)(G:\研究方向\笔记\photo\class 5 卷积神经网络\image-20201119111320771.png)]

待优化的参数过多容易导致模型过拟合,实际应用时会先对原始图像进行特征提取,再把提取到的特征送给全连接网络。

卷积Convolutional

卷积计算可认为是一种有效提取图像特征的方法

一般会用一个正方形的卷积核,按照指定步长,在输入特征图上滑动,遍历输入特征图中的每个像素点。每一个步长,卷积核会与输入特征图出现重合区域,重合区域对应元素相乘、求和再加上偏置项得到输出特征的一个像素点。

输入特征图的深度(channel数),决定了当前层卷积核的深度;

当前层卷积核的个数,决定了当前层输出特征图的深度。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MLsi2Cp2-1605844850997)(G:\研究方向\笔记\photo\class 5 卷积神经网络\image-20201119112159777.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4m4f3anu-1605844851000)(G:\研究方向\笔记\photo\class 5 卷积神经网络\image-20201119112316821.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OMronY6k-1605844851005)(G:\研究方向\笔记\photo\class 5 卷积神经网络\image-20201119112400980.png)]


感受野

感受野Receptive Field:

卷积神经网络各输出特征图中的每个像素点,在原始输入图片上映射区域的大小。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zTd1Uko7-1605844851008)(G:\研究方向\笔记\photo\class 5 卷积神经网络\image-20201119113149439.png)]


全零填充

TF描述全零填充

padding=‘SAME’(全0填充;入长/步长(向上取整))或padding=‘VALID’((入长-核长+1)/步长(向上取整))


TF描述卷积计算层

tf.keras.layers.Conv2D(

filters=卷积核个数,

kernel_size=卷积核尺寸,#正方形写核长整数,或(核高h,核宽w)

strides=滑动步长,#横纵向相同写步长整数,或(纵向步长h,横向步长w),默认1

padding=“same” or “valid”,#使用全零填充是“same”,不使用是“valid”(默认)

activation="relu" or "sigmoid" or "tanh" or "softmax",#如有BN此处可不写

input_shape=(高,宽,通道数)#输入特赠图维度,可省略

)
model=tf.keras.models.Sequential([
    Conv2D(6,5,padding='valid',activation='sigmoid'),
    MaxPool2D(2,2),
    Conv2D(6,(5,5),padding='valid',activation='sigmoid'),
    MaxPool2D(2,(2,2)),
    Conv2D(filters=6,kernel_size=(5,5),padding='valid',activation='sigmoid'),
    MaxPool2D(pool_size=(2,2),strides=2),
    Flatten(),
    Dense(10,activation='softmax')
])

批标准化

批标准化(Batch Normalization,BN)

标准化:使数据符合0均值,1为标准差得分布

批标准化:对一小批数据(batch)做标准化处理。

批标准化后,第k个卷积核的输出特征图中的第i个像素点

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-IHhoIwgT-1605844851011)(G:\研究方向\笔记\photo\class 5 卷积神经网络\image-20201120094217659.png)]

Hi’k:批标准化之前,第k个卷积核,输出 特征图中的第i个像素点

μbatchk:批标准前,第k个卷积核,batch张输出特征图中所有像素点平均值

𝝈batchk:批标准化前,第k个卷积核,batch张输出特征图中所有像素点标准差。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nwh4hpId-1605844851014)(G:\研究方向\笔记\photo\class 5 卷积神经网络\image-20201120094815958.png)]

为每个卷积核引入可训练参数𝜸和𝜷,调整批归一化的力度。

BN层位于卷积层之后,激活层之前:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zu5nd2N1-1605844851016)(G:\研究方向\笔记\photo\class 5 卷积神经网络\image-20201120095323786.png)]

TF描述批标准化(BN)

tf.keras.layers.BatchNormalization()
model=tf.keras.models.Sequential([
    Conv2D(filters=6,kernel_size=(5,5),padding='same'),
    BatchNormalization(),#BN层
    Activation('relu'),#激活层
    MaxPool2D(pool_size=(2,2),strides=2,padding='same'),#池化层
    Dropout(0.2)
])

池化

池化用于减少特征数据量。最大值池化可提取图片纹理,均值池化可保留背景特征。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XzsGJNbA-1605844851019)(G:\研究方向\笔记\photo\class 5 卷积神经网络\image-20201120095814442.png)]

TF描述池化:

tf.keras.layers.MaxPool2D(
	pool_size=池化核尺寸,#正方形写核长整数,或(核高h,核宽w)
	strides=池化步长,#步长尺寸,或(纵向步长h,横向步长w),默认为pool_size
    padding='valid'or'same'#使用全零填充是same,不使用是valid
)
tf.keras.layers.AveragePooling2D(
    pool_size=池化核尺寸,#正方形写核长整数,或(核高h,核宽w)
	strides=池化步长,#步长尺寸,或(纵向步长h,横向步长w),默认为pool_size
    padding='valid'or'same'#使用全零填充是same,不使用是valid
)
model=tf.keras.models.Sequential([
    Conv2D(filters=6,kernel_size=(5,5),padding='same')#卷积层
    BatchNormalization(),#BN
    Activation('relu'),#激活层
    MaxPool2D(pool_size=(2,2),strides=2,padding='same')#池化层
    Dropout(0.2),
])

舍弃

在神经网络训练时,将一部分神经元按照一定概率从神经网络中暂时舍弃。神经网络使用时,被舍弃的神经元恢复链接。

TF描述舍弃

tf.keras.layers.Dropout(舍弃的概率)

model=tf.keras.models.Sequential([
    Conv2D(filters=6,kernel_size=(5,5),padding='same')#卷积层
    BatchNormalization(),#BN
    Activation('relu'),#激活层
    MaxPool2D(pool_size=(2,2),strides=2,padding='same')#池化层
    Dropout(0.2),#dropout层
])

卷积神经网络

卷积神经网络:借助卷积核提取出特征后,送入全连接网络。

卷积神经网络的主要模块:

卷积Convolutional-》标准化BN-》激活Activation-》池化Pooling-》全连接FC

卷积就是特征提取器,就是CBAPD

model=tf.keras.models.Sequential([
  C    Conv2D(filters=6,kernel_size=(5,5),padding='same')#卷积层
 B   BatchNormalization(),#BN
 A   Activation('relu'),#激活层
 P   MaxPool2D(pool_size=(2,2),strides=2,padding='same')#池化层
 D   Dropout(0.2),#dropout层
])

CIFAR0数据集

卷积神经网络搭建示例


LeNet

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5NHNA3vB-1605844851023)(G:\研究方向\笔记\photo\class 5 卷积神经网络\image-20201120101757655.png)]


AlexNet

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-gop0Ucld-1605844851026)(G:\研究方向\笔记\photo\class 5 卷积神经网络\image-20201120101905056.png)]


VGGNet

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-3Gylihk3-1605844851028)(G:\研究方向\笔记\photo\class 5 卷积神经网络\image-20201120102006376.png)]


InceptionNet

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-2vIYL5Z7-1605844851030)(G:\研究方向\笔记\photo\class 5 卷积神经网络\image-20201120102026896.png)]


ResNet

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-g1nsZsGW-1605844851033)(G:\研究方向\笔记\photo\class 5 卷积神经网络\image-20201120102200149.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YrLPim1S-1605844851035)(G:\研究方向\笔记\photo\class 5 卷积神经网络\image-20201120102213045.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-98IQLO0H-1605844851037)(G:\研究方向\笔记\photo\class 5 卷积神经网络\image-20201120102239800.png)]


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值