4. 卷积神经网络-池化(Pooling)和舍弃(Dropout)

本文深入解析卷积神经网络中的池化操作,包括最大值池化和均值池化的特点及应用,并介绍了如何通过Dropout技术提高模型泛化能力,防止过拟合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 池化

池化操作用于减少卷积神经网络中特征数据量,一般有最大值池化和均值池化。
最大值池化可提取图片纹理,均值池化可保留背景特征。
在这里插入图片描述

tensorflow描述池化

1) 最大值池化

tf.keras.layers.MaxPool2D(
pool_size=池化核尺寸。若是正方形则写核长整数,否则写成(核高h,核宽w)
strides=池化步长。步长整数,或者写成(纵向步长h,横向步长w),默认为pool_size
padding=‘valid’ or ‘same’。使用全零填充是’same’,不使用是’valid’(默认)

2) 均值池化

tf.keras.layers.AveragePooling2D(
pool_size=池化核尺寸。若是正方形则写核长整数,否则写成(核高h,核宽w)
strides=池化步长。步长整数,或者写成(纵向步长h,横向步长w),默认为pool_size
padding=‘valid’ or ‘same’。使用全零填充是’same’,不使用是’valid’(默认)

代码例子:

model = tf.keras.models.Sequential([
...
MaxPool2D(pool_size=(2, 2), strides=2, padding='same')  # 池化层
...
}

2. 舍弃(Dropout)

在神经网络训练时,将一部分神经元按照一定概率从神经网络中暂时舍弃。神经网络使用时,被舍弃的神经元恢复连接。
在这里插入图片描述

tensorflow描述舍弃

tf.keras.layers.Dropout(舍弃的概率)
代码例子:

model = tf.keras.models.Sequential([
...
Dropout(0.2) # dropout层
...
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值