信号的两种表现形式-时域和频域

目录

时域信号

时域和频域信号的关系

非周期信号


时域信号

        时域上,电信号的幅度是随着时间变化的。其图形,是示波器常用的显示模式。

        同时,也可以用矢量投影来表示随时间变化的波形。

        这两种显示模式之间的关系,如下图所示,可以通过一个简单的正弦信号显示出来。

        时间轴上的振幅对应于投影在虚轴上的矢量分量,即:

        矢量的角频率可以由下式得到:

时域和频域信号的关系

        时域和频域这两种表示形式,可以通过傅里叶变换相互关联。

        所以时域中的每一个信号都在频域中对应相应的频谱。

        傅里叶变换公式,如下图所示。

周期信号

        根据傅里叶定理,任何时间域中的周期性信号都可以分解为不同频率和振幅的正弦/余弦信号的总和。这样的总和被称为傅里叶级数。如下图所示:

        下图表示了,傅里叶级数前四项之和。

        当谐波数量增多时,信号就越接近于理想的矩形脉冲。

        当信号为余弦信号时,其频谱为:

        当信号为正弦信号时,其频谱为:

        可以看出,正弦和余弦信号的频谱都由狄拉克脉冲组成,而且他们的傅里叶变换在幅度上是相同的,因此这两个信号在同一频率处表现出相同的幅度谱。

        一个周期性信号的频谱,可以用傅里叶级数来表示。级数中的每一个分量,在频域都对应一个迪拉克脉冲,它是频域中的一个离散分量。因此,周期性信号总是表现出离散频谱,也被称为线谱。

        下图是近似矩形信号对应的时域分量和频域分量。

下图是一些周期信号在时域和频域的表示。

非周期信号

        那周期信号可以用傅里叶级数来表示,但是非周期信号呢?

        非周期信号的频谱可以通过傅里叶变换来计算,其频谱不是由离散频谱分量组成的。非周期信号在频域为连续频谱,其频谱密度与频率有关。

        与正弦和余弦信号类似,对于许多信号来说,都能获得确切的表达式。

        但对于在时域具有随机特性的信号,如噪声或随机比特序列,则很少能得到相应的频域解。在这种情况下,频谱可以则一般通过数值解来确定。

        下图中是一些非周期信号在时域和频域的表示。

        当要看时域波形时,可以用示波器进行测量;当要看频域波形时,可以用频谱仪进行测量。

        下图所示的信号似乎是一个频率为20MHz的纯正弦波信号。同样,大家也期望在频域,只有20MHz的单根频谱。

        但是,借助频谱分析仪在频域中检查该信号时,发现除了基波之外,还有几个高阶谐波。所以,谐波分量则在时域中看不出来。

参考文献:

Christoph Rauscher, Fundamentals of Spectrum Analysis

下载链接:

链接:https://pan.baidu.com/s/1sf0Kw1KLvxnftmRpHsHstg

提取码:y38i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值