MATLAB中linsolve函数用法

目录

语法

说明

​示例

线性系统求解

隐藏矩阵条件警告


        linsolve函数的功能是对线性系统求解。

语法

X = linsolve(A,B)
X = linsolve(A,B,opts)
[X,r] = linsolve(___)

说明

        ​X = linsolve(A,B) 使用以下方法之一求解线性系统 AX = B:​

  • 当 A 是方阵时,linsolve 使用 LU 分解和部分主元消去法。

  • 对于所有其他情况,linsolve 使用 QR 分解和列主元消去法。

如果 A 为病态(对于方阵)或秩亏(对于矩形矩阵),则 linsolve 发出警告。

        X = linsolve(A,B,opts) 使用由 options 结构体 opts 确定的合适的求解器。opts 中的字段是说明矩阵 A 的属性的逻辑值。例如,如果 A 是上三角矩阵,可以设置 opts.UT = true 以使 linsolve 使用为上三角矩阵设计的求解器。linsolve 不再测试验证 A 是否具有 opts 中指定的属性。​

        [X,r] = linsolve(___) 还返回 r,即 A 的条件数的倒数(对于方阵)或 A 的秩(对于矩形矩阵)。您可以使用上述语法中的任何输入参数组合。使用此语法时,如果 A 为病态或秩亏,linsolve 不会发出警告。

​示例

线性系统求解

        使用 mldivide 和 linsolve 求解线性系统以比较性能。

        mldivide 是在 MATLAB® 中求解大多数线性系统的推荐方法。不过,该函数会对输入矩阵执行几项检查,以确定它是否具有任何特殊属性。如果事先了解系数矩阵的属性,则可以使用 linsolve 来避免对大型矩阵进行耗时的检查。

        创建一个 10000×10000 幻方矩阵,并提取下三角部分。将 opts 结构体的 LT 字段设置为 true 以指示 A 是下三角矩阵。

A = tril(magic(1e4));
opts.LT = true;

        创建由 1 组成的向量作为线性方程 Ax=b 的右侧。A 和 b 中的行数必须相等。

b = ones(size(A,2),1);

        使用 mldivide 求解线性系统 Ax=b,并对计算计时。

tic
x1 = A\b; 
t1 = toc
t1 = 0.0847

        现在,使用 linsolve 再次求解该方程组。指定 options 结构体,以便 linsolve 可以为下三角矩阵选择合适的求解器。

tic
x2 = linsolve(A,b,opts);
t2 = toc
t2 = 0.0188

        比较执行时间,查看 linsolve 快了多少。与任何计时比较一样,不同计算机和不同版本的 MATLAB 产生的计时结果可能不同。

speedup = t1/t2
speedup = 4.4970

隐藏矩阵条件警告

        使用具有两个输出的 linsolve 求解线性系统,以隐藏矩阵条件警告。

        创建一个 20×20 Hilbert 测试矩阵。此矩阵接近奇异矩阵,最大奇异值比最小奇异值大 2e18 左右。

A = hilb(20);

        使用 linsolve 求解涉及 A 的线性系统。由于 A 接近奇异矩阵,linsolve 返回警告。

b = ones(20,1);
x = linsolve(A,b);


Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND =  5.628781e-20.

        现在,求解同一个线性系统,但为 linsolve 指定两个输出。MATLAB® 隐藏警告,第二个输出 r 包含 A 的条件数倒数。可以使用此语法处理代码中具有特殊情况的病态矩阵,而代码不会产生警告。

[x,r] = linsolve(A,b)
x = 20×1
109 ×

   -0.0000
    0.0000
   -0.0004
    0.0071
   -0.0592
    0.2819
   -0.7821
    1.1830
   -0.7030
   -0.1061
      ⋮

r = 5.6288e-20

提示

  • linsolve 的速度优势可能因矩阵结构和基本算法的相对优化而异。在某些情况下(例如使用小矩阵时),速度相比 mldivide 可能没有任何提高。linsolve 的速度优势在于它处理大型矩阵时不必花费大量时间检查其属性,或在于它相比 mldivide 选择了一种更适合输入的算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值