[数学]三角函数

三角函数

I 基本性质

在这里插入图片描述

(i) 对积

sin ⁡ x csc ⁡ x = 1 cos ⁡ x sec ⁡ x = 1 tan ⁡ x cot ⁡ x = 1 \begin{aligned} \sin x \csc x = 1 \\ \cos x \sec x = 1 \\ \tan x \cot x = 1 \\ \end{aligned} sinxcscx=1cosxsecx=1tanxcotx=1

(ii) 夹积

tan ⁡ x cos ⁡ x = sin ⁡ x sin ⁡ x cot ⁡ x = cos ⁡ x cos ⁡ x csc ⁡ x = cot ⁡ x cot ⁡ x sec ⁡ x = csc ⁡ x tan ⁡ x csc ⁡ x = sec ⁡ x sin ⁡ x sec ⁡ x = tan ⁡ x \begin{aligned} \tan x \cos x &= \sin x \\ \sin x \cot x &= \cos x \\ \cos x \csc x &= \cot x \\ \cot x \sec x &= \csc x\\ \tan x \csc x &= \sec x \\ \sin x \sec x &= \tan x \\ \end{aligned} tanxcosxsinxcotxcosxcscxcotxsecxtanxcscxsinxsecx=sinx=cosx=cotx=cscx=secx=tanx

(iii) 平方和

sin ⁡ 2 x + cos ⁡ 2 x = 1 1 + cot ⁡ 2 x = csc ⁡ 2 x tan ⁡ 2 x + 1 = sec ⁡ 2 x \begin{aligned} \sin^2 x + \cos^2 x = 1 \\ 1 + \cot^2 x = \csc^2 x \\ \tan^2 x + 1 = \sec^2 x \\ \end{aligned} sin2x+cos2x=11+cot2x=csc2xtan2x+1=sec2x

II 和积

(i) 加减

sin ⁡ ( x ± y ) = sin ⁡ x cos ⁡ y ± cos ⁡ x sin ⁡ y cos ⁡ ( x ± y ) = cos ⁡ x cos ⁡ y ∓ sin ⁡ x sin ⁡ y tan ⁡ ( x ± y ) = tan ⁡ x ± tan ⁡ y 1 ∓ tan ⁡ x tan ⁡ y \begin{aligned} \sin(x \pm y) &= \sin x \cos y \pm \cos x \sin y \\ \cos(x \pm y) &= \cos x \cos y \mp \sin x \sin y \\ \tan(x \pm y) &= \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y} \end{aligned} sin(x±y)cos(x±y)tan(x±y)=sinxcosy±cosxsiny=cosxcosysinxsiny=1tanxtanytanx±tany

(ii) 和差化积

sin ⁡ x ± sin ⁡ y = 2 sin ⁡ ( x ± y 2 ) cos ⁡ ( x ∓ y 2 ) cos ⁡ x + cos ⁡ y = 2 cos ⁡ ( x + y 2 ) cos ⁡ ( x − y 2 ) cos ⁡ x − cos ⁡ y = − 2 sin ⁡ ( x + y 2 ) sin ⁡ ( x − y 2 ) \begin{aligned} \sin x \pm \sin y &= 2 \sin(\frac{x \pm y}{2})\cos(\frac{x \mp y}{2}) \\ \cos x + \cos y &= 2 \cos(\frac{x + y}{2})\cos(\frac{x - y}{2}) \\ \cos x - \cos y &= -2 \sin(\frac{x + y}{2})\sin(\frac{x - y}{2}) \end{aligned} sinx±sinycosx+cosycosxcosy=2sin(2x±y)cos(2xy)=2cos(2x+y)cos(2xy)=2sin(2x+y)sin(2xy)

(iii) 积化和差

sin ⁡ x cos ⁡ y = 1 2 [ sin ⁡ ( x − y ) + sin ⁡ ( x + y ) ] cos ⁡ x cos ⁡ y = 1 2 [ cos ⁡ ( x − y ) + cos ⁡ ( x + y ) ] sin ⁡ x sin ⁡ y = 1 2 [ cos ⁡ ( x − y ) − cos ⁡ ( x + y ) ] \begin{aligned} \sin x \cos y &= \frac{1}{2}[\sin(x - y) + \sin(x + y)] \\ \cos x \cos y &= \frac{1}{2}[\cos(x - y) + \cos(x + y)] \\ \sin x \sin y &= \frac{1}{2}[\cos(x - y) - \cos(x + y)] \end{aligned} sinxcosycosxcosysinxsiny=21[sin(xy)+sin(x+y)]=21[cos(xy)+cos(x+y)]=21[cos(xy)cos(x+y)]

III 倍角

(i) 半角

sin ⁡ ( x 2 ) = ± 1 − cos ⁡ x 2 cos ⁡ ( x 2 ) = ± 1 + cos ⁡ x 2 tan ⁡ ( x 2 ) = ± 1 − cos ⁡ x 1 + cos ⁡ x = sin ⁡ x 1 + cos ⁡ x = 1 − cos ⁡ x sin ⁡ x = csc ⁡ x − cot ⁡ x \begin{aligned} \sin(\frac{x}{2}) &= \pm \sqrt{\frac{1-\cos x}{2}} \\ \cos(\frac{x}{2}) &= \pm \sqrt{\frac{1+\cos x}{2}} \\ \tan(\frac{x}{2}) &= \pm \sqrt\frac{1-\cos x}{1+\cos x} &= \frac{\sin x}{1+\cos x} &= \frac{1-\cos x}{\sin x} &= \csc x - \cot x \\ \end{aligned} sin(2x)cos(2x)tan(2x)=±21cosx =±21+cosx =±1+cosx1cosx =1+cosxsinx=sinx1cosx=cscxcotx

(ii) 二倍角

sin ⁡ 2 x = 2 sin ⁡ x cos ⁡ x cos ⁡ 2 x = cos ⁡ 2 x − sin ⁡ 2 x = 2 cos ⁡ 2 x − 1 = 1 − 2 sin ⁡ 2 x tan ⁡ 2 x = 2 tan ⁡ x 1 − tan ⁡ 2 x \begin{aligned} \sin 2x &= 2\sin x\cos x \\ \cos 2x &= \cos^2x-\sin^2x = 2\cos^2x - 1 = 1-2\sin^2x \\ \tan 2x &= \frac{2\tan x}{1-\tan^2x} \\ \end{aligned} sin2xcos2xtan2x=2sinxcosx=cos2xsin2x=2cos2x1=12sin2x=1tan2x2tanx

(iii) N倍角

( cos ⁡ θ + i sin ⁡ θ ) n = cos ⁡ n θ + i sin ⁡ n θ (\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta (cosθ+isinθ)n=cosnθ+isinnθ 用二项式定理展开可得

cos ⁡ ( n θ ) = ∑ i = 0 ⌊ n / 2 ⌋ ( − 1 ) i C n 2 i cos ⁡ n − 2 i θ sin ⁡ 2 i θ sin ⁡ ( n θ ) = ∑ i = 0 ⌊ ( n − 1 ) / 2 ⌋ ( − 1 ) i C n 2 i + 1 cos ⁡ n − 2 i − 1 θ sin ⁡ 2 i + 1 θ \begin{aligned} \cos(n\theta) &= \sum_{i=0}^{\lfloor{n/2}\rfloor}{(-1)^i C_{n}^{2i}\cos^{n-2i}\theta\sin^{2i}\theta} \\ \sin(n\theta) &= \sum_{i=0}^{\lfloor{(n-1)/2}\rfloor}{(-1)^i C_{n}^{2i+1}\cos^{n-2i-1}\theta\sin^{2i+1}\theta} \\ \end{aligned} cos(nθ)sin(nθ)=i=0n/2(1)iCn2icosn2iθsin2iθ=i=0(n1)/2(1)iCn2i+1cosn2i1θsin2i+1θ

IV 万能

sin ⁡ x = 2 u 1 + u 2 cos ⁡ x = 1 − u 2 1 + u 2 tan ⁡ x = 2 u 1 − u 2 d x = 2 1 + u 2 d u u = tan ⁡ x 2 \begin{aligned} \sin x &= \frac{2u}{1+u^2} \\ \cos x &= \frac{1-u^2}{1+u^2} \\ \tan x &= \frac{2u}{1-u^2} \\ \text{d}x &= \frac{2}{1+u^2}\text{d}u \\ u &= \tan\frac x2 \end{aligned} sinxcosxtanxdxu=1+u22u=1+u21u2=1u22u=1+u22du=tan2x

V 级数

f ( x ) f(x) f(x)在点 x = x 0 x=x_0 x=x0具有任意阶导数,则幂级数
∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n \sum_{n=0}^{\infin}{\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n} n=0n!f(n)(x0)(xx0)n

称为 f ( x ) f(x) f(x)在点 x 0 x_0 x0处的泰勒级数。
其中 x 0 = 0 x_0=0 x0=0时,级数
∑ n = 0 ∞ f ( n ) ( 0 ) n ! x n \sum_{n=0}^{\infin}{\frac{f^{(n)}(0)}{n!}x^n} n=0n!f(n)(0)xn

称为麦克劳林级数。

sin ⁡ x = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + ⋯ \sin x = x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+ \cdots sinx=x3!x3+5!x57!x7+

cos ⁡ x = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + ⋯ \cos x = 1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+ \cdots cosx=12!x2+4!x46!x6+

tan ⁡ x = x + x 3 3 + 2 x 5 15 + 17 x 7 315 + ⋯ \tan x = x+\frac{x^3}{3}+\frac{2x^5}{15}+\frac{17x^7}{315}+\cdots tanx=x+3x3+152x5+31517x7+

cot ⁡ x = 1 x − x 3 − x 3 45 − 2 x 5 945 − ⋯ \cot x = \frac{1}{x}-\frac{x}{3}-\frac{x^3}{45}-\frac{2x^5}{945}-\cdots cotx=x13x45x39452x5

sec ⁡ x = 1 + x 2 2 + 5 x 4 24 + 61 x 6 720 + ⋯ \sec x = 1+\frac{x^2}{2}+\frac{5x^4}{24}+\frac{61x^6}{720}+\cdots secx=1+2x2+245x4+72061x6+

csc ⁡ x = 1 x + x 6 + 7 x 3 360 + 31 x 5 15120 + ⋯ \csc x = \frac{1}{x}+\frac{x}{6}+\frac{7x^3}{360}+\frac{31x^5}{15120}+\cdots cscx=x1+6x+3607x3+1512031x5+

arcsin ⁡ x = x + 1 2 x 3 3 + 1 ⋅ 3 2 ⋅ 4 x 5 5 + 1 ⋅ 3 ⋅ 5 2 ⋅ 4 ⋅ 6 x 7 7 + ⋯ \arcsin x = x + \frac{1}{2}\frac{x^3}{3} + \frac{1\cdot3}{2\cdot4}\frac{x^5}{5} + \frac{1\cdot3\cdot5}{2\cdot4\cdot6}\frac{x^7}{7}+\cdots arcsinx=x+213x3+24135x5+2461357x7+

arctan ⁡ x = { x − x 3 3 + x 5 5 − x 7 7 + ⋯ if  ∣ x ∣ < 1 ± π 2 − 1 x + 1 3 x 3 − 1 5 x 5 + ⋯ + if  x ≥ 1 , − if  x ≤ − 1 \arctan x = \begin{cases} x-\cfrac{x^3}{3}+\cfrac{x^5}{5}-\cfrac{x^7}{7}+\cdots &\text{if }{\left|{x}\right|<1} \\ \pm \cfrac{\pi}{2}-\cfrac{1}{x}+\cfrac{1}{3x^3}-\cfrac{1}{5x^5}+\cdots &+\text{if }{x\ge 1},-\text{if }{x\le-1} \end{cases} arctanx=x3x3+5x57x7+±2πx1+3x315x51+if x<1+if x1,if x1

1 1 − x , ( ∣ x ∣ < 1 ) \cfrac 1{1-x},(|x|<1) 1x1,(x<1) 做导数、定积分及换元等操作, 容易得到级数
1 1 − x = 1 + x + x 2 + x 3 + ⋯ 1 1 + x = 1 − x + x 2 − x 3 + ⋯ 1 1 − x 2 = 1 + x 2 + x 4 + x 6 + ⋯ 1 1 + x 2 = 1 − x 2 + x 4 − x 6 + ⋯ arth  x = x + x 3 3 + x 5 5 + x 7 7 + ⋯ arctan ⁡ x = x − x 3 3 + x 5 5 − x 7 7 + ⋯ ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 − x 4 4 + ⋯ \frac 1{1-x}=1+x+x^2+x^3+\cdots\\ \frac 1{1+x}=1-x+x^2-x^3+\cdots \\ \frac 1{1-x^2}=1+x^2+x^4+x^6+\cdots \\ \frac 1{1+x^2}=1-x^2+x^4-x^6+\cdots \\ \text{arth }x= x+\frac{x^3}3+\frac{x^5}5+\frac{x^7}7+\cdots \\ \arctan x = x-\cfrac {x^3}3+\cfrac{x^5}5-\frac{x^7}7+\cdots \\ \ln (1+x) = x-\frac{x^2}{2}+\frac{x^3}3-\frac{x^4}4+\cdots 1x1=1+x+x2+x3+1+x1=1x+x2x3+1x21=1+x2+x4+x6+1+x21=1x2+x4x6+arth x=x+3x3+5x5+7x7+arctanx=x3x3+5x57x7+ln(1+x)=x2x2+3x34x4+

VI 微积分

(i) 导数

( sin ⁡ x ) ′ = cos ⁡ x ( cos ⁡ x ) ′ = − sin ⁡ x ( tan ⁡ x ) ′ = 1 cos ⁡ 2 x = sec ⁡ 2 x ( cot ⁡ x ) ′ = − 1 sin ⁡ 2 x = − csc ⁡ 2 x ( sec ⁡ x ) ′ = sin ⁡ x cos ⁡ 2 x = sec ⁡ x tan ⁡ x ( csc ⁡ x ) ′ = − cos ⁡ x sin ⁡ 2 x = − csc ⁡ x cot ⁡ x ( arcsin ⁡ x ) ′ = 1 1 − x 2 ( arccos ⁡ x ) ′ = − 1 1 − x 2 ( arctan ⁡ x ) ′ = 1 1 + x 2 ( arccot  x ) ′ = − 1 1 + x 2 ( arcsec  x ) ′ = 1 x x 2 − 1 ( arccsc  x ) ′ = − 1 x x 2 − 1 \begin{aligned} \left(\sin x\right)' &= \cos x \\ \left(\cos x\right)' &= -\sin x \\ \left(\tan x\right)' &= \frac{1}{\cos^2 x} = \sec^2 x \\ \left(\cot x\right)' &= -\frac{1}{\sin^2 x} = -\csc^2 x \\ \left(\sec x\right)' &= \frac{\sin x}{\cos^2 x} = \sec x \tan x \\ \left(\csc x\right)' &= -\frac{\cos x}{\sin^2 x} = -\csc x \cot x \\ \left(\arcsin x\right)' &= \frac{1}{\sqrt{1-x^2}} \\ \left(\arccos x\right)' &= -\frac{1}{\sqrt{1-x^2}} \\ \left(\arctan x\right)' &= \frac{1}{1+x^2} \\ \left(\text{arccot } x\right)' &= -\frac{1}{1+x^2} \\ \left(\text{arcsec } x\right)' &= \frac{1}{x\sqrt{x^2-1}} \\ \left(\text{arccsc } x\right)' &= -\frac{1}{x\sqrt{x^2-1}} \\ \end{aligned} (sinx)(cosx)(tanx)(cotx)(secx)(cscx)(arcsinx)(arccosx)(arctanx)(arccot x)(arcsec x)(arccsc x)=cosx=sinx=cos2x1=sec2x=sin2x1=csc2x=cos2xsinx=secxtanx=sin2xcosx=cscxcotx=1x2 1=1x2 1=1+x21=1+x21=xx21 1=xx21 1

(ii) 不定积分

∫ sin ⁡ x d x = − cos ⁡ x + C ∫ cos ⁡ x d x = sin ⁡ x + C ∫ tan ⁡ x d x = − ln ⁡ ∣ cos ⁡ x ∣ + C ∫ cot ⁡ x d x = ln ⁡ ∣ sin ⁡ x ∣ + C ∫ sec ⁡ x d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C ∫ csc ⁡ x d x = ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + C ∫ arcsin ⁡ x a d x = x arcsin ⁡ x a + a 2 − x 2 + C ∫ arccos ⁡ x a d x = x arccos ⁡ x a − a 2 − x 2 + C ∫ arctan ⁡ x a d x = x arctan ⁡ x a − x 2 ln ⁡ ( a 2 + x 2 ) + C \begin{aligned} \int{\sin x\text{d} x} &= -\cos x +C \\ \int{\cos x\text{d} x} &= \sin x +C \\ \int{\tan x\text{d} x} &= -\ln\left|{\cos x}\right| +C \\ \int{\cot x\text{d} x} &= \ln\left|{\sin x}\right| +C \\ \int{\sec x\text{d} x} &= \ln\left|{\sec x + \tan x}\right| +C \\ \int{\csc x\text{d} x} &= \ln\left|{\csc x - \cot x}\right| +C \\ \int{\arcsin \frac{x}{a}\text{d} x} &= x\arcsin \frac{x}{a}+\sqrt{a^2-x^2} +C \\ \int{\arccos \frac{x}{a}\text{d} x} &= x\arccos \frac{x}{a}-\sqrt{a^2-x^2} +C \\ \int{\arctan \frac{x}{a}\text{d} x} &= x\arctan \frac{x}{a}-\frac{x}{2}\ln(a^2+x^2) +C \\ \end{aligned} sinxdxcosxdxtanxdxcotxdxsecxdxcscxdxarcsinaxdxarccosaxdxarctanaxdx=cosx+C=sinx+C=lncosx+C=lnsinx+C=lnsecx+tanx+C=lncscxcotx+C=xarcsinax+a2x2 +C=xarccosaxa2x2 +C=xarctanax2xln(a2+x2)+C

VII 特殊角

角度弧度 sin ⁡ \sin sin cos ⁡ \cos cos tan ⁡ \tan tan cot ⁡ \cot cot sec ⁡ \sec sec csc ⁡ \csc csc
0 ° ± 0 {0\degree}_{\pm0} 0°±0 0 ± 0 0_{\pm0} 0±0 0 0 0 1 1 1 0 0 0 ± ∞ \pm\infin ± 1 1 1 ± ∞ \pm\infin ±
15 ° 15\degree 15° π 12 \frac\pi{12} 12π 6 − 2 4 \frac{\sqrt6-\sqrt2}{4} 46 2 6 + 2 4 \frac{\sqrt6+\sqrt2}{4} 46 +2 2 − 3 2-\sqrt3 23 2 + 3 2+\sqrt3 2+3 6 − 2 \sqrt6-\sqrt2 6 2 6 + 2 \sqrt6+\sqrt2 6 +2
18 ° 18\degree 18° π 10 \frac\pi{10} 10π 5 − 1 4 \frac{\sqrt5-1}{4} 45 1 10 + 2 5 4 \frac{\sqrt{10+2\sqrt5}}{4} 410+25 5 − 2 5 5 \sqrt{\frac{5-2\sqrt5}5} 5525 5 + 2 5 \sqrt{5+2\sqrt5} 5+25 50 − 10 5 5 \frac{\sqrt{50-10\sqrt5}}5 550105 5 + 1 \sqrt5+1 5 +1
22.5 ° 22.5\degree 22.5° π 8 \frac\pi{8} 8π 2 − 2 2 \frac{\sqrt{2-\sqrt2}}{2} 222 2 + 2 2 \frac{\sqrt{2+\sqrt{2}}}{2} 22+2 2 − 1 \sqrt2-1 2 1 2 + 1 \sqrt2+1 2 +1 4 − 2 2 \sqrt{4-2\sqrt2} 422 4 + 2 2 \sqrt{4+2\sqrt2} 4+22
30 ° 30\degree 30° π 6 \frac\pi6 6π 1 2 \frac12 21 3 2 \frac{\sqrt3}{2} 23 3 3 \frac{\sqrt3}3 33 3 \sqrt3 3 2 3 3 \frac{2\sqrt3}3 323 2 2 2
36 ° 36\degree 36° π 5 \frac\pi5 5π 10 − 2 5 4 \frac{\sqrt{10-2\sqrt5}}{4} 41025 5 + 1 4 \frac{\sqrt5+1}{4} 45 +1 5 − 2 5 \sqrt{5-2\sqrt5} 525 5 + 2 5 5 \sqrt{\frac{5+2\sqrt5}5} 55+25 5 − 1 \sqrt5-1 5 1 10 + 2 5 5 \sqrt{\frac{10+2\sqrt5}5} 510+25
45 ° 45\degree 45° π 4 \frac\pi4 4π 2 2 \frac{\sqrt2}2 22 2 2 \frac{\sqrt2}2 22 1 1 1 1 1 1 2 \sqrt2 2 2 \sqrt2 2
54 ° 54\degree 54° 3 π 10 \frac{3\pi}{10} 103π 5 + 1 4 \frac{\sqrt5+1}{4} 45 +1 10 − 2 5 4 \frac{\sqrt{10-2\sqrt5}}{4} 41025 5 + 2 5 5 \sqrt{\frac{5+2\sqrt5}5} 55+25 5 − 2 5 \sqrt{5-2\sqrt5} 525 10 + 2 5 5 \frac{10+2\sqrt5}5 510+25 5 − 1 \sqrt5-1 5 1
60 ° 60\degree 60° π 3 \frac\pi3 3π 3 2 \frac{\sqrt3}{2} 23 1 2 \frac12 21 3 \sqrt3 3 3 3 \frac{\sqrt3}3 33 2 2 2 2 3 3 \frac{2\sqrt3}3 323
67.5 ° 67.5\degree 67.5° 3 π 8 \frac{3\pi}8 83π 2 + 2 2 \frac{\sqrt{2+\sqrt{2}}}{2} 22+2 2 − 2 2 \frac{\sqrt{2-\sqrt2}}{2} 222 2 + 1 \sqrt2+1 2 +1 2 − 1 \sqrt2-1 2 1 4 + 2 2 \sqrt{4+2\sqrt2} 4+22 4 − 2 2 \sqrt{4-2\sqrt2} 422
72 ° 72\degree 72° 2 π 5 \frac{2\pi}5 52π 10 + 2 5 4 \frac{\sqrt{10+2\sqrt5}}{4} 410+25 5 − 1 4 \frac{\sqrt5-1}{4} 45 1 5 + 2 5 \sqrt{5+2\sqrt5} 5+25 5 − 2 5 5 \sqrt{\frac{5-2\sqrt5}5} 5525 5 + 1 \sqrt5+1 5 +1 50 − 10 5 5 \frac{\sqrt{50-10\sqrt5}}5 550105
75 ° 75\degree 75° 5 π 12 \frac{5\pi}{12} 125π 6 + 2 4 \frac{\sqrt6+\sqrt2}{4} 46 +2 6 − 2 4 \frac{\sqrt6-\sqrt2}{4} 46 2 2 + 3 2+\sqrt3 2+3 2 − 3 2-\sqrt3 23 6 + 2 \sqrt6+\sqrt2 6 +2 6 − 2 \sqrt6-\sqrt2 6 2
90 ° ± 0 {90\degree}_{\pm0} 90°±0 π 2 ± 0 {\frac\pi2}_{\pm0} 2π±0 1 1 1 0 0 0 ∓ ∞ \mp\infin 0 0 0 ∓ ∞ \mp\infin 1 1 1

VIII 诱导

sin ⁡ ( x + 2 k π ) = − sin ⁡ ( − x ) = − sin ⁡ ( x ± π ) = ∓ cos ⁡ ( x ± 1 2 π ) cos ⁡ ( x + 2 k π ) = cos ⁡ ( − x ) = − cos ⁡ ( x ± π ) = ± sin ⁡ ( x ± 1 2 π ) tan ⁡ ( x + k π ) = − tan ⁡ ( − x ) = − cot ⁡ ( x ± 1 2 π ) cot ⁡ ( x + k π ) = − cot ⁡ ( − x ) = − tan ⁡ ( x ± 1 2 π ) sec ⁡ ( x + 2 k π ) = sec ⁡ ( − x ) = − sec ⁡ ( x ± π ) = ± csc ⁡ ( x ± 1 2 π ) csc ⁡ ( x + 2 k π ) = − csc ⁡ ( − x ) = − csc ⁡ ( x ± π ) = ∓ sec ⁡ ( x ± 1 2 π ) \begin{aligned} \sin(x+2k\pi) &= -\sin(-x) &= -\sin(x \pm \pi) &= \mp\cos(x \pm \frac12\pi) \\ \cos(x+2k\pi) &= \cos(-x) &= -\cos(x\pm\pi) &= \pm\sin(x\pm\frac12\pi) \\ \tan(x+k\pi) &= -\tan(-x) &&= -\cot(x\pm\frac12\pi) \\ \cot(x+k\pi) &= -\cot(-x) &&= -\tan(x\pm\frac12\pi) \\ \sec(x+2k\pi) &= \sec(-x) &= -\sec(x\pm\pi) &= \pm\csc(x\pm\frac12\pi) \\ \csc(x+2k\pi) &= -\csc(-x) &= -\csc(x\pm\pi) &= \mp\sec(x\pm\frac12\pi) \\ \end{aligned} sin(x+2kπ)cos(x+2kπ)tan(x+kπ)cot(x+kπ)sec(x+2kπ)csc(x+2kπ)=sin(x)=cos(x)=tan(x)=cot(x)=sec(x)=csc(x)=sin(x±π)=cos(x±π)=sec(x±π)=csc(x±π)=cos(x±21π)=±sin(x±21π)=cot(x±21π)=tan(x±21π)=±csc(x±21π)=sec(x±21π)

IX 反函数

(i) 余角

arcsin ⁡ x + arccos ⁡ x = π 2 arctan ⁡ x + arccot  x = π 2 arcsec  x + arccsc  x = π 2 \begin{aligned} \arcsin x+\arccos x &= \frac\pi2 \\ \arctan x+\text{arccot } x &= \frac\pi2 \\ \text{arcsec } x+\text{arccsc } x &= \frac\pi2 \end{aligned} arcsinx+arccosxarctanx+arccot xarcsec x+arccsc x=2π=2π=2π

(ii) 负数

arcsin ⁡ x + arcsin ⁡ ( − x ) = 0 arccos ⁡ x + arccos ⁡ ( − x ) = π arcsec  x + arcsec  ( − x ) = π arccsc  x + arccsc  ( − x ) = 0 \begin{aligned} \arcsin x + \arcsin(-x) &= 0 \\ \arccos x + \arccos(-x) &= \pi \\ \text{arcsec } x + \text{arcsec } (-x) &= \pi \\ \text{arccsc } x + \text{arccsc } (-x) &= 0 \\ \end{aligned} arcsinx+arcsin(x)arccosx+arccos(x)arcsec x+arcsec (x)arccsc x+arccsc (x)=0=π=π=0

(iii) 倒数

arcsin ⁡ x = arccsc  1 x arccos ⁡ x = arcsec  1 x arctan ⁡ x = arccot  1 x \begin{aligned} \arcsin x &=\text{arccsc }\frac 1x \\ \arccos x &=\text{arcsec }\frac 1x \\ \arctan x &=\text{arccot }\frac 1x \\ \end{aligned} arcsinxarccosxarctanx=arccsc x1=arcsec x1=arccot x1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值