三角函数
I 基本性质
(i) 对积
sin x csc x = 1 cos x sec x = 1 tan x cot x = 1 \begin{aligned} \sin x \csc x = 1 \\ \cos x \sec x = 1 \\ \tan x \cot x = 1 \\ \end{aligned} sinxcscx=1cosxsecx=1tanxcotx=1
(ii) 夹积
tan x cos x = sin x sin x cot x = cos x cos x csc x = cot x cot x sec x = csc x tan x csc x = sec x sin x sec x = tan x \begin{aligned} \tan x \cos x &= \sin x \\ \sin x \cot x &= \cos x \\ \cos x \csc x &= \cot x \\ \cot x \sec x &= \csc x\\ \tan x \csc x &= \sec x \\ \sin x \sec x &= \tan x \\ \end{aligned} tanxcosxsinxcotxcosxcscxcotxsecxtanxcscxsinxsecx=sinx=cosx=cotx=cscx=secx=tanx
(iii) 平方和
sin 2 x + cos 2 x = 1 1 + cot 2 x = csc 2 x tan 2 x + 1 = sec 2 x \begin{aligned} \sin^2 x + \cos^2 x = 1 \\ 1 + \cot^2 x = \csc^2 x \\ \tan^2 x + 1 = \sec^2 x \\ \end{aligned} sin2x+cos2x=11+cot2x=csc2xtan2x+1=sec2x
II 和积
(i) 加减
sin ( x ± y ) = sin x cos y ± cos x sin y cos ( x ± y ) = cos x cos y ∓ sin x sin y tan ( x ± y ) = tan x ± tan y 1 ∓ tan x tan y \begin{aligned} \sin(x \pm y) &= \sin x \cos y \pm \cos x \sin y \\ \cos(x \pm y) &= \cos x \cos y \mp \sin x \sin y \\ \tan(x \pm y) &= \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y} \end{aligned} sin(x±y)cos(x±y)tan(x±y)=sinxcosy±cosxsiny=cosxcosy∓sinxsiny=1∓tanxtanytanx±tany
(ii) 和差化积
sin x ± sin y = 2 sin ( x ± y 2 ) cos ( x ∓ y 2 ) cos x + cos y = 2 cos ( x + y 2 ) cos ( x − y 2 ) cos x − cos y = − 2 sin ( x + y 2 ) sin ( x − y 2 ) \begin{aligned} \sin x \pm \sin y &= 2 \sin(\frac{x \pm y}{2})\cos(\frac{x \mp y}{2}) \\ \cos x + \cos y &= 2 \cos(\frac{x + y}{2})\cos(\frac{x - y}{2}) \\ \cos x - \cos y &= -2 \sin(\frac{x + y}{2})\sin(\frac{x - y}{2}) \end{aligned} sinx±sinycosx+cosycosx−cosy=2sin(2x±y)cos(2x∓y)=2cos(2x+y)cos(2x−y)=−2sin(2x+y)sin(2x−y)
(iii) 积化和差
sin x cos y = 1 2 [ sin ( x − y ) + sin ( x + y ) ] cos x cos y = 1 2 [ cos ( x − y ) + cos ( x + y ) ] sin x sin y = 1 2 [ cos ( x − y ) − cos ( x + y ) ] \begin{aligned} \sin x \cos y &= \frac{1}{2}[\sin(x - y) + \sin(x + y)] \\ \cos x \cos y &= \frac{1}{2}[\cos(x - y) + \cos(x + y)] \\ \sin x \sin y &= \frac{1}{2}[\cos(x - y) - \cos(x + y)] \end{aligned} sinxcosycosxcosysinxsiny=21[sin(x−y)+sin(x+y)]=21[cos(x−y)+cos(x+y)]=21[cos(x−y)−cos(x+y)]
III 倍角
(i) 半角
sin ( x 2 ) = ± 1 − cos x 2 cos ( x 2 ) = ± 1 + cos x 2 tan ( x 2 ) = ± 1 − cos x 1 + cos x = sin x 1 + cos x = 1 − cos x sin x = csc x − cot x \begin{aligned} \sin(\frac{x}{2}) &= \pm \sqrt{\frac{1-\cos x}{2}} \\ \cos(\frac{x}{2}) &= \pm \sqrt{\frac{1+\cos x}{2}} \\ \tan(\frac{x}{2}) &= \pm \sqrt\frac{1-\cos x}{1+\cos x} &= \frac{\sin x}{1+\cos x} &= \frac{1-\cos x}{\sin x} &= \csc x - \cot x \\ \end{aligned} sin(2x)cos(2x)tan(2x)=±21−cosx=±21+cosx=±1+cosx1−cosx=1+cosxsinx=sinx1−cosx=cscx−cotx
(ii) 二倍角
sin 2 x = 2 sin x cos x cos 2 x = cos 2 x − sin 2 x = 2 cos 2 x − 1 = 1 − 2 sin 2 x tan 2 x = 2 tan x 1 − tan 2 x \begin{aligned} \sin 2x &= 2\sin x\cos x \\ \cos 2x &= \cos^2x-\sin^2x = 2\cos^2x - 1 = 1-2\sin^2x \\ \tan 2x &= \frac{2\tan x}{1-\tan^2x} \\ \end{aligned} sin2xcos2xtan2x=2sinxcosx=cos2x−sin2x=2cos2x−1=1−2sin2x=1−tan2x2tanx
(iii) N倍角
将 ( cos θ + i sin θ ) n = cos n θ + i sin n θ (\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta (cosθ+isinθ)n=cosnθ+isinnθ 用二项式定理展开可得
cos ( n θ ) = ∑ i = 0 ⌊ n / 2 ⌋ ( − 1 ) i C n 2 i cos n − 2 i θ sin 2 i θ sin ( n θ ) = ∑ i = 0 ⌊ ( n − 1 ) / 2 ⌋ ( − 1 ) i C n 2 i + 1 cos n − 2 i − 1 θ sin 2 i + 1 θ \begin{aligned} \cos(n\theta) &= \sum_{i=0}^{\lfloor{n/2}\rfloor}{(-1)^i C_{n}^{2i}\cos^{n-2i}\theta\sin^{2i}\theta} \\ \sin(n\theta) &= \sum_{i=0}^{\lfloor{(n-1)/2}\rfloor}{(-1)^i C_{n}^{2i+1}\cos^{n-2i-1}\theta\sin^{2i+1}\theta} \\ \end{aligned} cos(nθ)sin(nθ)=i=0∑⌊n/2⌋(−1)iCn2icosn−2iθsin2iθ=i=0∑⌊(n−1)/2⌋(−1)iCn2i+1cosn−2i−1θsin2i+1θ
IV 万能
sin x = 2 u 1 + u 2 cos x = 1 − u 2 1 + u 2 tan x = 2 u 1 − u 2 d x = 2 1 + u 2 d u u = tan x 2 \begin{aligned} \sin x &= \frac{2u}{1+u^2} \\ \cos x &= \frac{1-u^2}{1+u^2} \\ \tan x &= \frac{2u}{1-u^2} \\ \text{d}x &= \frac{2}{1+u^2}\text{d}u \\ u &= \tan\frac x2 \end{aligned} sinxcosxtanxdxu=1+u22u=1+u21−u2=1−u22u=1+u22du=tan2x
V 级数
设
f
(
x
)
f(x)
f(x)在点
x
=
x
0
x=x_0
x=x0具有任意阶导数,则幂级数
∑
n
=
0
∞
f
(
n
)
(
x
0
)
n
!
(
x
−
x
0
)
n
\sum_{n=0}^{\infin}{\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n}
n=0∑∞n!f(n)(x0)(x−x0)n
称为
f
(
x
)
f(x)
f(x)在点
x
0
x_0
x0处的泰勒级数。
其中
x
0
=
0
x_0=0
x0=0时,级数
∑
n
=
0
∞
f
(
n
)
(
0
)
n
!
x
n
\sum_{n=0}^{\infin}{\frac{f^{(n)}(0)}{n!}x^n}
n=0∑∞n!f(n)(0)xn
称为麦克劳林级数。
sin x = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + ⋯ \sin x = x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+ \cdots sinx=x−3!x3+5!x5−7!x7+⋯
cos x = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + ⋯ \cos x = 1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+ \cdots cosx=1−2!x2+4!x4−6!x6+⋯
tan x = x + x 3 3 + 2 x 5 15 + 17 x 7 315 + ⋯ \tan x = x+\frac{x^3}{3}+\frac{2x^5}{15}+\frac{17x^7}{315}+\cdots tanx=x+3x3+152x5+31517x7+⋯
cot x = 1 x − x 3 − x 3 45 − 2 x 5 945 − ⋯ \cot x = \frac{1}{x}-\frac{x}{3}-\frac{x^3}{45}-\frac{2x^5}{945}-\cdots cotx=x1−3x−45x3−9452x5−⋯
sec x = 1 + x 2 2 + 5 x 4 24 + 61 x 6 720 + ⋯ \sec x = 1+\frac{x^2}{2}+\frac{5x^4}{24}+\frac{61x^6}{720}+\cdots secx=1+2x2+245x4+72061x6+⋯
csc x = 1 x + x 6 + 7 x 3 360 + 31 x 5 15120 + ⋯ \csc x = \frac{1}{x}+\frac{x}{6}+\frac{7x^3}{360}+\frac{31x^5}{15120}+\cdots cscx=x1+6x+3607x3+1512031x5+⋯
arcsin x = x + 1 2 x 3 3 + 1 ⋅ 3 2 ⋅ 4 x 5 5 + 1 ⋅ 3 ⋅ 5 2 ⋅ 4 ⋅ 6 x 7 7 + ⋯ \arcsin x = x + \frac{1}{2}\frac{x^3}{3} + \frac{1\cdot3}{2\cdot4}\frac{x^5}{5} + \frac{1\cdot3\cdot5}{2\cdot4\cdot6}\frac{x^7}{7}+\cdots arcsinx=x+213x3+2⋅41⋅35x5+2⋅4⋅61⋅3⋅57x7+⋯
arctan x = { x − x 3 3 + x 5 5 − x 7 7 + ⋯ if ∣ x ∣ < 1 ± π 2 − 1 x + 1 3 x 3 − 1 5 x 5 + ⋯ + if x ≥ 1 , − if x ≤ − 1 \arctan x = \begin{cases} x-\cfrac{x^3}{3}+\cfrac{x^5}{5}-\cfrac{x^7}{7}+\cdots &\text{if }{\left|{x}\right|<1} \\ \pm \cfrac{\pi}{2}-\cfrac{1}{x}+\cfrac{1}{3x^3}-\cfrac{1}{5x^5}+\cdots &+\text{if }{x\ge 1},-\text{if }{x\le-1} \end{cases} arctanx=⎩⎪⎨⎪⎧x−3x3+5x5−7x7+⋯±2π−x1+3x31−5x51+⋯if ∣x∣<1+if x≥1,−if x≤−1
对
1
1
−
x
,
(
∣
x
∣
<
1
)
\cfrac 1{1-x},(|x|<1)
1−x1,(∣x∣<1) 做导数、定积分及换元等操作, 容易得到级数
1
1
−
x
=
1
+
x
+
x
2
+
x
3
+
⋯
1
1
+
x
=
1
−
x
+
x
2
−
x
3
+
⋯
1
1
−
x
2
=
1
+
x
2
+
x
4
+
x
6
+
⋯
1
1
+
x
2
=
1
−
x
2
+
x
4
−
x
6
+
⋯
arth
x
=
x
+
x
3
3
+
x
5
5
+
x
7
7
+
⋯
arctan
x
=
x
−
x
3
3
+
x
5
5
−
x
7
7
+
⋯
ln
(
1
+
x
)
=
x
−
x
2
2
+
x
3
3
−
x
4
4
+
⋯
\frac 1{1-x}=1+x+x^2+x^3+\cdots\\ \frac 1{1+x}=1-x+x^2-x^3+\cdots \\ \frac 1{1-x^2}=1+x^2+x^4+x^6+\cdots \\ \frac 1{1+x^2}=1-x^2+x^4-x^6+\cdots \\ \text{arth }x= x+\frac{x^3}3+\frac{x^5}5+\frac{x^7}7+\cdots \\ \arctan x = x-\cfrac {x^3}3+\cfrac{x^5}5-\frac{x^7}7+\cdots \\ \ln (1+x) = x-\frac{x^2}{2}+\frac{x^3}3-\frac{x^4}4+\cdots
1−x1=1+x+x2+x3+⋯1+x1=1−x+x2−x3+⋯1−x21=1+x2+x4+x6+⋯1+x21=1−x2+x4−x6+⋯arth x=x+3x3+5x5+7x7+⋯arctanx=x−3x3+5x5−7x7+⋯ln(1+x)=x−2x2+3x3−4x4+⋯
VI 微积分
(i) 导数
( sin x ) ′ = cos x ( cos x ) ′ = − sin x ( tan x ) ′ = 1 cos 2 x = sec 2 x ( cot x ) ′ = − 1 sin 2 x = − csc 2 x ( sec x ) ′ = sin x cos 2 x = sec x tan x ( csc x ) ′ = − cos x sin 2 x = − csc x cot x ( arcsin x ) ′ = 1 1 − x 2 ( arccos x ) ′ = − 1 1 − x 2 ( arctan x ) ′ = 1 1 + x 2 ( arccot x ) ′ = − 1 1 + x 2 ( arcsec x ) ′ = 1 x x 2 − 1 ( arccsc x ) ′ = − 1 x x 2 − 1 \begin{aligned} \left(\sin x\right)' &= \cos x \\ \left(\cos x\right)' &= -\sin x \\ \left(\tan x\right)' &= \frac{1}{\cos^2 x} = \sec^2 x \\ \left(\cot x\right)' &= -\frac{1}{\sin^2 x} = -\csc^2 x \\ \left(\sec x\right)' &= \frac{\sin x}{\cos^2 x} = \sec x \tan x \\ \left(\csc x\right)' &= -\frac{\cos x}{\sin^2 x} = -\csc x \cot x \\ \left(\arcsin x\right)' &= \frac{1}{\sqrt{1-x^2}} \\ \left(\arccos x\right)' &= -\frac{1}{\sqrt{1-x^2}} \\ \left(\arctan x\right)' &= \frac{1}{1+x^2} \\ \left(\text{arccot } x\right)' &= -\frac{1}{1+x^2} \\ \left(\text{arcsec } x\right)' &= \frac{1}{x\sqrt{x^2-1}} \\ \left(\text{arccsc } x\right)' &= -\frac{1}{x\sqrt{x^2-1}} \\ \end{aligned} (sinx)′(cosx)′(tanx)′(cotx)′(secx)′(cscx)′(arcsinx)′(arccosx)′(arctanx)′(arccot x)′(arcsec x)′(arccsc x)′=cosx=−sinx=cos2x1=sec2x=−sin2x1=−csc2x=cos2xsinx=secxtanx=−sin2xcosx=−cscxcotx=1−x21=−1−x21=1+x21=−1+x21=xx2−11=−xx2−11
(ii) 不定积分
∫ sin x d x = − cos x + C ∫ cos x d x = sin x + C ∫ tan x d x = − ln ∣ cos x ∣ + C ∫ cot x d x = ln ∣ sin x ∣ + C ∫ sec x d x = ln ∣ sec x + tan x ∣ + C ∫ csc x d x = ln ∣ csc x − cot x ∣ + C ∫ arcsin x a d x = x arcsin x a + a 2 − x 2 + C ∫ arccos x a d x = x arccos x a − a 2 − x 2 + C ∫ arctan x a d x = x arctan x a − x 2 ln ( a 2 + x 2 ) + C \begin{aligned} \int{\sin x\text{d} x} &= -\cos x +C \\ \int{\cos x\text{d} x} &= \sin x +C \\ \int{\tan x\text{d} x} &= -\ln\left|{\cos x}\right| +C \\ \int{\cot x\text{d} x} &= \ln\left|{\sin x}\right| +C \\ \int{\sec x\text{d} x} &= \ln\left|{\sec x + \tan x}\right| +C \\ \int{\csc x\text{d} x} &= \ln\left|{\csc x - \cot x}\right| +C \\ \int{\arcsin \frac{x}{a}\text{d} x} &= x\arcsin \frac{x}{a}+\sqrt{a^2-x^2} +C \\ \int{\arccos \frac{x}{a}\text{d} x} &= x\arccos \frac{x}{a}-\sqrt{a^2-x^2} +C \\ \int{\arctan \frac{x}{a}\text{d} x} &= x\arctan \frac{x}{a}-\frac{x}{2}\ln(a^2+x^2) +C \\ \end{aligned} ∫sinxdx∫cosxdx∫tanxdx∫cotxdx∫secxdx∫cscxdx∫arcsinaxdx∫arccosaxdx∫arctanaxdx=−cosx+C=sinx+C=−ln∣cosx∣+C=ln∣sinx∣+C=ln∣secx+tanx∣+C=ln∣cscx−cotx∣+C=xarcsinax+a2−x2+C=xarccosax−a2−x2+C=xarctanax−2xln(a2+x2)+C
VII 特殊角
角度 | 弧度 | sin \sin sin | cos \cos cos | tan \tan tan | cot \cot cot | sec \sec sec | csc \csc csc |
---|---|---|---|---|---|---|---|
0 ° ± 0 {0\degree}_{\pm0} 0°±0 | 0 ± 0 0_{\pm0} 0±0 | 0 0 0 | 1 1 1 | 0 0 0 | ± ∞ \pm\infin ±∞ | 1 1 1 | ± ∞ \pm\infin ±∞ |
15 ° 15\degree 15° | π 12 \frac\pi{12} 12π | 6 − 2 4 \frac{\sqrt6-\sqrt2}{4} 46−2 | 6 + 2 4 \frac{\sqrt6+\sqrt2}{4} 46+2 | 2 − 3 2-\sqrt3 2−3 | 2 + 3 2+\sqrt3 2+3 | 6 − 2 \sqrt6-\sqrt2 6−2 | 6 + 2 \sqrt6+\sqrt2 6+2 |
18 ° 18\degree 18° | π 10 \frac\pi{10} 10π | 5 − 1 4 \frac{\sqrt5-1}{4} 45−1 | 10 + 2 5 4 \frac{\sqrt{10+2\sqrt5}}{4} 410+25 | 5 − 2 5 5 \sqrt{\frac{5-2\sqrt5}5} 55−25 | 5 + 2 5 \sqrt{5+2\sqrt5} 5+25 | 50 − 10 5 5 \frac{\sqrt{50-10\sqrt5}}5 550−105 | 5 + 1 \sqrt5+1 5+1 |
22.5 ° 22.5\degree 22.5° | π 8 \frac\pi{8} 8π | 2 − 2 2 \frac{\sqrt{2-\sqrt2}}{2} 22−2 | 2 + 2 2 \frac{\sqrt{2+\sqrt{2}}}{2} 22+2 | 2 − 1 \sqrt2-1 2−1 | 2 + 1 \sqrt2+1 2+1 | 4 − 2 2 \sqrt{4-2\sqrt2} 4−22 | 4 + 2 2 \sqrt{4+2\sqrt2} 4+22 |
30 ° 30\degree 30° | π 6 \frac\pi6 6π | 1 2 \frac12 21 | 3 2 \frac{\sqrt3}{2} 23 | 3 3 \frac{\sqrt3}3 33 | 3 \sqrt3 3 | 2 3 3 \frac{2\sqrt3}3 323 | 2 2 2 |
36 ° 36\degree 36° | π 5 \frac\pi5 5π | 10 − 2 5 4 \frac{\sqrt{10-2\sqrt5}}{4} 410−25 | 5 + 1 4 \frac{\sqrt5+1}{4} 45+1 | 5 − 2 5 \sqrt{5-2\sqrt5} 5−25 | 5 + 2 5 5 \sqrt{\frac{5+2\sqrt5}5} 55+25 | 5 − 1 \sqrt5-1 5−1 | 10 + 2 5 5 \sqrt{\frac{10+2\sqrt5}5} 510+25 |
45 ° 45\degree 45° | π 4 \frac\pi4 4π | 2 2 \frac{\sqrt2}2 22 | 2 2 \frac{\sqrt2}2 22 | 1 1 1 | 1 1 1 | 2 \sqrt2 2 | 2 \sqrt2 2 |
54 ° 54\degree 54° | 3 π 10 \frac{3\pi}{10} 103π | 5 + 1 4 \frac{\sqrt5+1}{4} 45+1 | 10 − 2 5 4 \frac{\sqrt{10-2\sqrt5}}{4} 410−25 | 5 + 2 5 5 \sqrt{\frac{5+2\sqrt5}5} 55+25 | 5 − 2 5 \sqrt{5-2\sqrt5} 5−25 | 10 + 2 5 5 \frac{10+2\sqrt5}5 510+25 | 5 − 1 \sqrt5-1 5−1 |
60 ° 60\degree 60° | π 3 \frac\pi3 3π | 3 2 \frac{\sqrt3}{2} 23 | 1 2 \frac12 21 | 3 \sqrt3 3 | 3 3 \frac{\sqrt3}3 33 | 2 2 2 | 2 3 3 \frac{2\sqrt3}3 323 |
67.5 ° 67.5\degree 67.5° | 3 π 8 \frac{3\pi}8 83π | 2 + 2 2 \frac{\sqrt{2+\sqrt{2}}}{2} 22+2 | 2 − 2 2 \frac{\sqrt{2-\sqrt2}}{2} 22−2 | 2 + 1 \sqrt2+1 2+1 | 2 − 1 \sqrt2-1 2−1 | 4 + 2 2 \sqrt{4+2\sqrt2} 4+22 | 4 − 2 2 \sqrt{4-2\sqrt2} 4−22 |
72 ° 72\degree 72° | 2 π 5 \frac{2\pi}5 52π | 10 + 2 5 4 \frac{\sqrt{10+2\sqrt5}}{4} 410+25 | 5 − 1 4 \frac{\sqrt5-1}{4} 45−1 | 5 + 2 5 \sqrt{5+2\sqrt5} 5+25 | 5 − 2 5 5 \sqrt{\frac{5-2\sqrt5}5} 55−25 | 5 + 1 \sqrt5+1 5+1 | 50 − 10 5 5 \frac{\sqrt{50-10\sqrt5}}5 550−105 |
75 ° 75\degree 75° | 5 π 12 \frac{5\pi}{12} 125π | 6 + 2 4 \frac{\sqrt6+\sqrt2}{4} 46+2 | 6 − 2 4 \frac{\sqrt6-\sqrt2}{4} 46−2 | 2 + 3 2+\sqrt3 2+3 | 2 − 3 2-\sqrt3 2−3 | 6 + 2 \sqrt6+\sqrt2 6+2 | 6 − 2 \sqrt6-\sqrt2 6−2 |
90 ° ± 0 {90\degree}_{\pm0} 90°±0 | π 2 ± 0 {\frac\pi2}_{\pm0} 2π±0 | 1 1 1 | 0 0 0 | ∓ ∞ \mp\infin ∓∞ | 0 0 0 | ∓ ∞ \mp\infin ∓∞ | 1 1 1 |
VIII 诱导
sin ( x + 2 k π ) = − sin ( − x ) = − sin ( x ± π ) = ∓ cos ( x ± 1 2 π ) cos ( x + 2 k π ) = cos ( − x ) = − cos ( x ± π ) = ± sin ( x ± 1 2 π ) tan ( x + k π ) = − tan ( − x ) = − cot ( x ± 1 2 π ) cot ( x + k π ) = − cot ( − x ) = − tan ( x ± 1 2 π ) sec ( x + 2 k π ) = sec ( − x ) = − sec ( x ± π ) = ± csc ( x ± 1 2 π ) csc ( x + 2 k π ) = − csc ( − x ) = − csc ( x ± π ) = ∓ sec ( x ± 1 2 π ) \begin{aligned} \sin(x+2k\pi) &= -\sin(-x) &= -\sin(x \pm \pi) &= \mp\cos(x \pm \frac12\pi) \\ \cos(x+2k\pi) &= \cos(-x) &= -\cos(x\pm\pi) &= \pm\sin(x\pm\frac12\pi) \\ \tan(x+k\pi) &= -\tan(-x) &&= -\cot(x\pm\frac12\pi) \\ \cot(x+k\pi) &= -\cot(-x) &&= -\tan(x\pm\frac12\pi) \\ \sec(x+2k\pi) &= \sec(-x) &= -\sec(x\pm\pi) &= \pm\csc(x\pm\frac12\pi) \\ \csc(x+2k\pi) &= -\csc(-x) &= -\csc(x\pm\pi) &= \mp\sec(x\pm\frac12\pi) \\ \end{aligned} sin(x+2kπ)cos(x+2kπ)tan(x+kπ)cot(x+kπ)sec(x+2kπ)csc(x+2kπ)=−sin(−x)=cos(−x)=−tan(−x)=−cot(−x)=sec(−x)=−csc(−x)=−sin(x±π)=−cos(x±π)=−sec(x±π)=−csc(x±π)=∓cos(x±21π)=±sin(x±21π)=−cot(x±21π)=−tan(x±21π)=±csc(x±21π)=∓sec(x±21π)
IX 反函数
(i) 余角
arcsin x + arccos x = π 2 arctan x + arccot x = π 2 arcsec x + arccsc x = π 2 \begin{aligned} \arcsin x+\arccos x &= \frac\pi2 \\ \arctan x+\text{arccot } x &= \frac\pi2 \\ \text{arcsec } x+\text{arccsc } x &= \frac\pi2 \end{aligned} arcsinx+arccosxarctanx+arccot xarcsec x+arccsc x=2π=2π=2π
(ii) 负数
arcsin x + arcsin ( − x ) = 0 arccos x + arccos ( − x ) = π arcsec x + arcsec ( − x ) = π arccsc x + arccsc ( − x ) = 0 \begin{aligned} \arcsin x + \arcsin(-x) &= 0 \\ \arccos x + \arccos(-x) &= \pi \\ \text{arcsec } x + \text{arcsec } (-x) &= \pi \\ \text{arccsc } x + \text{arccsc } (-x) &= 0 \\ \end{aligned} arcsinx+arcsin(−x)arccosx+arccos(−x)arcsec x+arcsec (−x)arccsc x+arccsc (−x)=0=π=π=0
(iii) 倒数
arcsin x = arccsc 1 x arccos x = arcsec 1 x arctan x = arccot 1 x \begin{aligned} \arcsin x &=\text{arccsc }\frac 1x \\ \arccos x &=\text{arcsec }\frac 1x \\ \arctan x &=\text{arccot }\frac 1x \\ \end{aligned} arcsinxarccosxarctanx=arccsc x1=arcsec x1=arccot x1