[数学] 复变简谈

复变简谈

本文旨在用简单通俗的方式简单谈谈复变函数, 不追求细枝末节. 一些被忽略的细节将以定理的形式补充.
逻辑上复变函数作为实变函数的扩展, 理应比实变函数复杂得多, 然而在工程实际中, 复变函数往往比实变函数简单. 讲道理, 应该是实变函数前进得太远了.

虚数定义

我们知道, 虚数单位 i i i 定义为 i : = − 1 i:=\sqrt{-1} i:=1 .

物理上由于 i i i 一般为电流, 故虚数单位会改用字母 j j j 来表示.

全体实数构成的集合记为 R \R R, 其元素一般用字母 a a a, b b b, c c c, x x x, y y y 等表示.
全体复数构成的集合记为 C \Complex C, 其元素一般用字母 z z z, w w w 表示.
下文中若无明确说明, 则隐含上两条的规则.

  • (1) 对任意一个复数 z z z, 总可唯一地拆写为 x + i y x+iy x+iy, 其中 x x x y y y 均为唯一的实数.

基于(1), 马上可得到两个常见的复函数: 实部 Re ( x + i y ) = x \text{Re}(x+iy)=x Re(x+iy)=x 和虚部 Im ( x + i y ) = y \text{Im}(x+iy)=y Im(x+iy)=y

复数 z = x + i y z=x+iy z=x+iy 中, 取 x x x 为横坐标, y y y 为纵坐标, 在平面上描点, 可以得到复平面. 复平面每一个点都对应一个复数.

定义复数的为复数在复平面原点到复数的"距离" ∣ x + i y ∣ = x 2 + y 2 |x+iy|=\sqrt{x^2+y^2} x+iy=x2+y2 , 复数的辐角为原点到复数的射线与实数轴正方向形成的"角度" Arg ( x + i y ) = { arctan ⁡ y x + 2 n π π + 2 n π ( y = 0 , x < 0 ) \text{Arg}(x+iy)=\begin{cases}\arctan \dfrac{y}{x}+2n\pi\\\pi+2n\pi &(y=0, x<0)\end{cases} Arg(x+iy)={arctanxy+2nππ+2nπ(y=0,x<0), ( n ∈ Z n\in \Z nZ).
辐角函数是多值函数, 相应定义其主值函数为 arg ⁡ ( x + i y ) = { arctan ⁡ y x π ( y = 0 , x < 0 ) \arg(x+iy)=\begin{cases}\arctan \dfrac{y}{x}\\\pi &(y=0, x<0)\end{cases} arg(x+iy)={arctanxyπ(y=0,x<0)

四则运算的数域扩充

在定义虚数单位后, 第一件事首先是对建立在原有实数数域基础上的加减乘除等的运算进行数域扩充.
扩充数域首先有一个原则: 新加入的数不能破坏原有数域下的运算具有的一切结构.

那么问题来了, 实数下的运算具有什么样的结构?
由群论可知, 实数及其四则运算具有如下结构:

    1. 封闭性 (若 a ∘ b a\circ b ab 有定义, 其中 a a a b b b 均为某一实数, ∘ \circ 为某一运算, 则其结果依然为实数)
    1. 交换律 ( a + b = b + a a+b=b+a a+b=b+a, a ⋅ b = b ⋅ a a\cdot b=b\cdot a ab=ba)
    1. 结合律 ( a + b + c = a + ( b + c ) a+b+c=a+(b+c) a+b+c=a+(b+c), a b c = a ( b c ) abc=a(bc) abc=a(bc))
    1. 分配律 ( a ( b ± c ) = a b ± a c a(b\pm c)=ab\pm ac a(b±c)=ab±ac, ( b ± c ) a = b a ± c a (b\pm c)a=ba\pm ca (b±c)a=ba±ca)
    1. 加法幺元 ( 0 0 0), 乘法零元 ( 0 0 0), 乘法幺元 ( 1 1 1)
    1. 消去律 ( a + b = a + c ⇔ b = c a+b=a+c\Leftrightarrow b=c a+b=a+cb=c, a b = a c ⇔ b = c ab=ac\Leftrightarrow b=c ab=acb=c)

在此基础上, 曾经有许多人尝试将各种不同的数加入实数, 比如试图将无穷大加入实数. 然而将一些定义不良好的无穷大加入实数, 只会导致原有数学结构出现自相矛盾. 有时候为了化简讨论, 会将严格限制其运算的无穷小和无穷大加入实数得到广义实数. 也有人破坏了实数的一部分性质(交换律), 加入了三个虚数单位 i i i, j j j, k k k, 得到了四元数.

直觉上, 可以定义

  • (2) ( x 0 + i y 0 ) + ( x 1 + i y 1 ) = x 0 + x 1 + i ( y 0 + y 1 ) (x_0+iy_0)+(x_1+iy_1) = x_0+x_1+i(y_0+y_1) (x0+iy0)+(x1+iy1)=x0+x1+i(y0+y1)
  • (3) ( x 0 + i y 0 ) − ( x 1 + i y 1 ) = x 0 − x 1 + i ( y 0 − y 1 ) (x_0+iy_0)-(x_1+iy_1) = x_0-x_1+i(y_0-y_1) (x0+iy0)(x1+iy1)=x0x1+i(y0y1)
  • (4) ( x 0 + i y 0 ) ⋅ ( x 1 + i y 1 ) = x 0 x 1 − y 0 y 1 + i ( x 1 y 0 + x 0 y 1 ) (x_0+iy_0)\cdot(x_1+iy_1) = x_0x_1-y_0y_1+i(x_1y_0+x_0y_1) (x0+iy0)(x1+iy1)=x0x1y0y1+i(x1y0+x0y1)
  • (5) x 0 + i y 0 x 1 + i y 1 = x 0 x 1 + y 0 y 1 + i ( x 1 y 0 − x 0 y 1 ) x 1 2 + y 1 2 \dfrac{x_0+iy_0}{x_1+iy_1} =\dfrac{x_0x_1+y_0y_1+i(x_1y_0-x_0y_1)}{x_1^2+y_1^2} x1+iy1x0+iy0=x12+y12x0x1+y0y1+i(x1y0x0y1)

以上计算法则虽然是人为定义的, 但该法则不违反前述实数的四则运算具有的所有结构, 是唯一而又必然的.

多值函数

传统上函数定义为一种映射, 是从实数集到实数集, 实数映射为实数的封闭的运算. 但一些情况下, 为了化简讨论, 常常会定义多值函数, 即将一个数映射为多个数的映射. 多值函数有两种定义方式, 一是解读为从 R \R R 映射到 R n \R^n Rn 空间的函数, 二是解读为多个单值函数的集合.
如函数 x e x xe^x xex 的反函数就是一个多值函数, 记作朗伯W函数 W W W, 包括两支单值函数, 上半支记作 W 0 W_0 W0, 下半支记作 W − 1 W_{-1} W1. 但在做一般计算时是两支函数同时考虑的.

很多时候所讨论的复函数常常为多值函数, 这时一般为所讨论的复函数定义两个函数, 一个是多值的原函数, 另一个是取其主值的单值函数. 前者大写函数的第一个字母, 后者以小写反之.

解析函数的数域扩充

前述(2)的复数加法是直觉的显然的, 但并不意味着这种情况是常见的, 接下来我们要扩充的函数就不显然了, 比如求 e x + i y e^{x+iy} ex+iy?
四则运算的数域扩充只是开始, 我们最终是要以一种通用的合理的信服的唯一的方式扩充所有的可导的实函数(往后还包括复函数)的值域. 这种扩充的过程称作解析延拓.
这种通用的合理的信服的唯一的方式就是给扩充目标施加兼容和解析的限制.

  • 兼容: 指复函数定义域回缩到原函数的定义域时, 与原函数恒等.
  • 解析: 指扩充后的复函数可导.

导数与解析函数

  • (6) 与实变函数的导数类似, 定义复函数 f f f导数
    f ′ ( z ) = lim ⁡ Δ z → 0 f ( z + Δ z ) − f ( z ) Δ z = lim ⁡ Δ x 2 + Δ y 2 → 0 f ( z + Δ x + i Δ y ) − f ( z ) Δ x + i Δ y f'(z)=\lim_{\Delta z\to 0}\dfrac{f(z+\Delta z)-f(z)}{\Delta z}=\lim_{\sqrt{\Delta x^2+\Delta y^2}\to0}\frac{f(z+\Delta x+i\Delta y)-f(z)}{\Delta x+i\Delta y} f(z)=Δz0limΔzf(z+Δz)f(z)=Δx2+Δy2 0limΔx+iΔyf(z+Δx+iΔy)f(z)

显然, 当 Δ y = 0 \Delta y=0 Δy=0, 且 z ∈ R z\in\R zR 时, 上述定义退化为实变函数的导数, 即兼容.

由(1), 可将 f ( z ) f(z) f(z) 拆写为两个二元函数 f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x, y)+iv(x,y) f(z)=u(x,y)+iv(x,y), z = x + i y z=x+iy z=x+iy. 代入到(6), 得到
f ′ ( z ) = lim ⁡ Δ x 2 + Δ y 2 → 0 u ( x + Δ x , y + Δ y ) + i v ( x + Δ x , y + Δ y ) − u ( x , y ) − i v ( x , y ) Δ x + i Δ y f'(z)=\lim_{\Delta x^2+\Delta y^2\to0}\frac{u(x+\Delta x, y+\Delta y)+iv(x+\Delta x, y+\Delta y)-u(x,y)-iv(x,y)}{\Delta x+i\Delta y} f(z)=Δx2+Δy20limΔx+iΔyu(x+Δx,y+Δy)+iv(x+Δx,y+Δy)u(x,y)iv(x,y)

= lim ⁡ Δ x 2 + Δ y 2 → 0 ( Δ u Δ x + i Δ y + i Δ v Δ x + i Δ y ) =\lim_{\Delta x^2+\Delta y^2\to0}\left(\frac{\Delta u}{\Delta x+i\Delta y}+i\frac{\Delta v}{\Delta x+i\Delta y}\right) =Δx2+Δy20lim(Δx+iΔyΔu+iΔx+iΔyΔv)

= lim ⁡ Δ x 2 + Δ y 2 → 0 ( Δ x Δ u + Δ y Δ v Δ x 2 + Δ y 2 + i Δ x Δ v − Δ y Δ u Δ x 2 + Δ y 2 ) =\lim_{\Delta x^2+\Delta y^2\to0}\left(\frac{\Delta x\Delta u+\Delta y\Delta v}{\Delta x^2+\Delta y^2}+i\frac{\Delta x\Delta v-\Delta y\Delta u}{\Delta x^2+\Delta y^2}\right) =Δx2+Δy20lim(Δx2+Δy2ΔxΔu+ΔyΔv+iΔx2+Δy2ΔxΔvΔyΔu)

由上式, 我们得到函数可导的两个必要条件(C-R方程) ∂ u ∂ x = ∂ v ∂ y \dfrac{\partial u}{\partial x}=\dfrac{\partial v}{\partial y} xu=yv ∂ u ∂ y = − ∂ v ∂ x \dfrac{\partial u}{\partial y}=-\dfrac{\partial v}{\partial x} yu=xv. 当满足这两个必要条件后, 上式可取 Δ y = 0 \Delta y=0 Δy=0, 继续化简为
= lim ⁡ Δ x → 0 ( Δ u Δ x + i Δ v Δ x ) = ∂ u ∂ x + i ∂ v ∂ y =\lim_{\Delta x\to0}\left(\frac{\Delta u}{\Delta x}+i\frac{\Delta v}{\Delta x}\right)=\dfrac{\partial u}{\partial x}+i\dfrac{\partial v}{\partial y} =Δx0lim(ΔxΔu+iΔxΔv)=xu+iyv

亦可取 Δ x = 0 \Delta x=0 Δx=0, 得到
= lim ⁡ Δ x → 0 ( Δ v Δ y − i Δ u Δ y ) = ∂ v ∂ y − i ∂ u ∂ y =\lim_{\Delta x\to0}\left(\frac{\Delta v}{\Delta y}-i\frac{\Delta u}{\Delta y}\right)=\dfrac{\partial v}{\partial y}-i\dfrac{\partial u}{\partial y} =Δx0lim(ΔyΔviΔyΔu)=yviyu

由此

  • (7) 当复函数 f ( x + i y ) = u ( x , y ) + i v ( x , y ) f(x+iy)=u(x,y)+iv(x,y) f(x+iy)=u(x,y)+iv(x,y) 在定义域 D D D 内满足C-R方程 { ∂ u ∂ x = ∂ v ∂ y ∂ u ∂ y = − ∂ v ∂ x \begin{cases}\dfrac{\partial u}{\partial x}=\dfrac{\partial v}{\partial y}\\\dfrac{\partial u}{\partial y}=-\dfrac{\partial v}{\partial x}\end{cases} xu=yvyu=xv 时, 称该函数在定义域 D D D解析, 该函数为解析函数.
  • (8) 当复函数 f ( x + i y ) = u ( x , y ) + i v ( x , y ) f(x+iy)=u(x,y)+iv(x,y) f(x+iy)=u(x,y)+iv(x,y) 在定义域 D D D 解析时, 函数在 D D D 可导, 其导数为 f ′ ( x + i y ) = ∂ u ∂ x + i ∂ v ∂ y = ∂ v ∂ y − i ∂ u ∂ y f'(x+iy)=\dfrac{\partial u}{\partial x}+i\dfrac{\partial v}{\partial y}=\dfrac{\partial v}{\partial y}-i\dfrac{\partial u}{\partial y} f(x+iy)=xu+iyv=yviyu

但注意, 前述提到的函数 Re ( z ) \text{Re}(z) Re(z) Im ( z ) \text{Im}(z) Im(z) 等, 不是解析函数.

  • (9) 解析函数任意阶可导.

指数函数与欧拉方程

指数函数有条重要性质

( e x ) ′ = e x (e^x)'=e^x (ex)=ex

接下来我们为该函数寻找一个良好的初等的解析的复函数, 作为其数域扩展后的函数, 要求

    1. 兼容原来的实指数函数.
    1. 是解析函数

考虑函数 f ( x + i y ) = e x cos ⁡ y + i e x sin ⁡ y f(x+iy)=e^x\cos y+ie^x\sin y f(x+iy)=excosy+iexsiny, 满足C-R方程
∂ ∂ x e x cos ⁡ y = ∂ ∂ y e x sin ⁡ y = e x cos ⁡ y \frac{\partial}{\partial x}e^x\cos y=\frac{\partial}{\partial y}e^x\sin y=e^x\cos y xexcosy=yexsiny=excosy

∂ ∂ x e x sin ⁡ y = − ∂ ∂ y e x cos ⁡ y = e x sin ⁡ y \frac{\partial}{\partial x}e^x\sin y=-\frac{\partial}{\partial y}e^x\cos y=e^x\sin y xexsiny=yexcosy=exsiny

故函数可导, 并解析, 其导数为 f ′ ( z ) = e x cos ⁡ y + i e x sin ⁡ y = f ( z ) f'(z)=e^x\cos y+ie^x\sin y=f(z) f(z)=excosy+iexsiny=f(z).
并且当 y = 0 y=0 y=0 时, 函数退化为 f ( x ) = e x f(x)=e^x f(x)=ex 指数函数. 至此, 可以确信这就是实对数函数扩充后的复对数函数.
另外我们考虑 f f f 的实部和虚部的幂级数展开(泰勒展开), 与指数函数的幂级数展开作比较以进行参考, 有
e x = 1 + x + 1 2 x 2 + 1 6 x 3 + ⋯ e^x=1+x+\frac{1}{2}x^2+\frac{1}{6}x^3+\cdots ex=1+x+21x2+61x3+

e z ∣ z = x + i y = 1 + x + i y + 1 2 x 2 − 1 2 y 2 + i x y + ⋯ \left.e^z\right|_{z=x+iy} = 1+x+iy+\frac{1}{2}x^2-\frac{1}{2}y^2+ixy + \cdots ezz=x+iy=1+x+iy+21x221y2+ixy+

= ( 1 + x + 1 2 x 2 − 1 2 y 2 + ⋯   ) + i ( y + x y + ⋯   ) = \left(1+x+\frac{1}{2}x^2-\frac 12 y^2+\cdots\right) + i(y+xy+\cdots) =(1+x+21x221y2+)+i(y+xy+)


sin ⁡ y = y − 1 6 y 3 + ⋯ \sin y=y-\frac{1}{6}y^3+\cdots siny=y61y3+

cos ⁡ y = 1 − 1 2 y 2 + ⋯ \cos y=1-\frac{1}{2}y^2+\cdots cosy=121y2+

e x cos ⁡ y + i e x sin ⁡ y = ( 1 + x + 1 2 x 2 − 1 2 y 2 + ⋯   ) + i ( y + x y + ⋯   ) e^x\cos y+ie^x\sin y = \left(1+x+\frac{1}{2}x^2-\frac 12 y^2+\cdots\right) +i(y+xy+\cdots) excosy+iexsiny=(1+x+21x221y2+)+i(y+xy+)

基于以上缘由, 定义下式作为实指数函数的扩充
e x + i y = e x cos ⁡ y + i e x sin ⁡ y e^{x+iy}=e^x\cos y+ie^x\sin y ex+iy=excosy+iexsiny

该式又称欧拉方程.

复指数函数又写作 Exp ( z ) \text{Exp}(z) Exp(z) exp ⁡ ( z ) \exp(z) exp(z), 为单值函数.

对数函数

对数函数定义为指数函数的反函数, 即若 y = e x y=e^x y=ex, 则对数函数有 ln ⁡ y = x \ln y=x lny=x. 下面来找复对数函数的实部和虚部函数.

注意到指数函数具有复周期 e x + i y + 2 i n π = e x cos ⁡ ( y + 2 n π ) + i e x sin ⁡ ( y + 2 n π ) = e x cos ⁡ y + i e x sin ⁡ y = e x + i y e^{x+iy+2in\pi}=e^x\cos(y+2n\pi)+ie^x\sin(y+2n\pi)=e^x\cos y+ie^x\sin y=e^{x+iy} ex+iy+2inπ=excos(y+2nπ)+iexsin(y+2nπ)=excosy+iexsiny=ex+iy, 其反函数复对数函数必将是个多值函数, 记作 Ln ( z ) \text{Ln}(z) Ln(z).
由复指数函数定义得到
x + i y = Ln ( e x cos ⁡ y + i e x sin ⁡ y ) x+iy=\text{Ln}(e^x\cos y+ie^x\sin y) x+iy=Ln(excosy+iexsiny)

a = e x cos ⁡ y a=e^x\cos y a=excosy, b = e x sin ⁡ y b=e^x\sin y b=exsiny, 得到
x = ln ⁡ a 2 + b 2 x=\ln\sqrt{a^2+b^2} x=lna2+b2

y = Arg ( a + i b ) y=\text{Arg}\left(a+ib\right) y=Arg(a+ib)

继而 Ln ( x + i y ) = ln ⁡ x 2 + y 2 + i Arg ( x + i y ) \text{Ln}(x+iy)=\ln\sqrt{x^2+y^2} +i\text{Arg}\left(x+iy\right) Ln(x+iy)=lnx2+y2 +iArg(x+iy)

我们检查兼容性, 令 y = 0 y=0 y=0, x > 0 x>0 x>0, 得到 Ln ( x ) = ln ⁡ x + 2 i n π \text{Ln}(x)=\ln x +2in\pi Ln(x)=lnx+2inπ

与原实对数函数兼容.
检查是否解析, 计算C-R方程得到
∂ ∂ x ln ⁡ x 2 + y 2 = ∂ ∂ y Arg ( x + i y ) = x x 2 + y 2 \frac{\partial}{\partial x}\ln\sqrt{x^2+y^2}=\frac{\partial}{\partial y}\text{Arg}\left(x+iy\right)=\dfrac{x}{x^2+y^2} xlnx2+y2 =yArg(x+iy)=x2+y2x

∂ ∂ x Arg ( x + i y ) = − ∂ ∂ y ln ⁡ x 2 + y 2 = − y x 2 + y 2 \frac{\partial}{\partial x}\text{Arg}\left(x+iy\right)=-\frac{\partial}{\partial y}\ln\sqrt{x^2+y^2}=-\dfrac{y}{x^2+y^2} xArg(x+iy)=ylnx2+y2 =x2+y2y

满足方程. 由此, 定义复对数函数为
Ln ( x + i y ) = ln ⁡ x 2 + y 2 + i Arg ( x + i y ) \text{Ln}(x+iy)=\ln\sqrt{x^2+y^2} +i\text{Arg}\left(x+iy\right) Ln(x+iy)=lnx2+y2 +iArg(x+iy)

其主值为
ln ⁡ ( x + i y ) = ln ⁡ x 2 + y 2 + i arg ⁡ ( x + i y ) \ln(x+iy)=\ln\sqrt{x^2+y^2} +i\arg\left(x+iy\right) ln(x+iy)=lnx2+y2 +iarg(x+iy)

其导数为
Ln ′ ( z ) = x − i y x 2 + y 2 = 1 x + i y = 1 z \text{Ln}'(z) = \dfrac{x-iy}{x^2+y^2} = \dfrac{1}{x+iy} = \dfrac 1z Ln(z)=x2+y2xiy=x+iy1=z1

其他初等函数

在实变函数中, 初等函数分由以下六类基本初等函数

  • 幂函数
  • 指数函数
  • 对数函数
  • 三角函数
  • 反三角函数
  • 常数函数

和有限次的以下两种基本运算

  • 有理运算: 加法 乘法
  • 函数复合

构成.

进入复变函数后, 六类基本初等函数可化简为三类:

  • 指数函数
  • 对数函数
  • 常数函数

幂函数, 三角函数, 反三角函数均可由前述三类函数表示.
如幂函数 z a = e a ln ( z ) z^a=e^{a\text{ln}(z)} za=ealn(z), 三角函数见另一篇文章 三角函数与双曲函数及其导数和不定积分.

  • (10) 初等函数除了孤立的奇点外, 处处解析. 可导的实函数将自变量换为复自变量后得到的复函数也是处处解析.

微分

复变函数的微分继续前述兼容原则. 定义自变量的微分为 d ( x + i y ) = d x + i d y \text d(x+iy)=\text dx+i\text dy d(x+iy)=dx+idy
考虑函数 f ( x + i y ) = u ( x , y ) + i v ( x , y ) f(x+iy)=u(x,y)+iv(x,y) f(x+iy)=u(x,y)+iv(x,y) 的微分, 有
d f ( x + i y ) = d u + i d v = u 1 ′ d x + u 2 ′ d y + i v 1 ′ d x + i v 2 ′ d y \text df(x+iy)=\text du+i\text dv=u'_1\text dx+u'_2\text dy+iv'_1\text dx+iv'_2\text dy df(x+iy)=du+idv=u1dx+u2dy+iv1dx+iv2dy

当函数可导时, 有 u 1 ′ = v 2 ′ u'_1=v'_2 u1=v2 u 2 ′ = − v 1 ′ u'_2=-v'_1 u2=v1. 则
d f ( x + i y ) = u 1 ′ d x + u 2 ′ d y + i v 1 ′ d x + i v 2 ′ d y = u 1 ′ d x − v 1 ′ d y + i v 1 ′ d x + i u 1 ′ d y = ( u 1 ′ + i v 1 ′ ) d x + ( u 1 ′ + i v 1 ′ ) i d y = f ′ ( x + i y ) d ( x + i y ) \begin{aligned} \text df(x+iy) &= u'_1\text dx+u'_2\text dy+iv'_1\text dx+iv'_2\text dy \\ &= u'_1\text dx-v'_1\text dy+iv'_1\text dx+iu'_1\text dy \\ &= (u'_1+iv'_1) \text dx+(u'_1+iv'_1)i\text dy\\ &= f'(x+iy)\text d(x+iy) \\ \end{aligned} df(x+iy)=u1dx+u2dy+iv1dx+iv2dy=u1dxv1dy+iv1dx+iu1dy=(u1+iv1)dx+(u1+iv1)idy=f(x+iy)d(x+iy)

曲线积分

由于复变函数的定义域有一维和二维至少两种情况, 由其几何性质, 有曲线和平面两类积分. 这里主要讲解曲线积分及其中的几个重要定理.
为简单起见, 下述闭合曲线均指只环绕一圈的简单闭合曲线(若尔当曲线).

一般函数的曲线积分

考虑复函数 f ( x + i y ) = u ( x , y ) + i v ( x , y ) f(x+iy)=u(x,y)+iv(x,y) f(x+iy)=u(x,y)+iv(x,y), 在复平面取一条有向线段 L : A B ^ L:\widehat{AB} L:AB 定义曲线积分为黎曼积分
∫ L f ( x + i y ) d ( x + i y ) = lim ⁡ n → ∞ ∑ i = 1 n f ( ζ i ) Δ z i \int_Lf(x+iy)\text d(x+iy)= \lim_{n\to\infin}\sum_{i=1}^{n}f(\zeta_i)\Delta z_i Lf(x+iy)d(x+iy)=nlimi=1nf(ζi)Δzi

其中 Δ z i \Delta z_i Δzi 是将 L L L 分成 n n n 份后第 i i i 份的长度, ζ i \zeta_i ζi 是第 i i i 份中的任意一点.
该式可化为
∫ L f ( x + i y ) d ( x + i y ) = ∫ L u ( x , y ) d x − v ( x , y ) d y + i ∫ L v ( x , y ) d x + u ( x , y ) d y \int_Lf(x+iy)\text d(x+iy)= \int_Lu(x,y)\text dx-v(x,y)\text dy+i\int_Lv(x,y)\text dx+u(x,y)\text dy Lf(x+iy)d(x+iy)=Lu(x,y)dxv(x,y)dy+iLv(x,y)dx+u(x,y)dy

解析函数的闭曲线积分

考虑解析函数 f ( x + i y ) = u ( x , y ) + i v ( x , y ) f(x+iy)=u(x,y)+iv(x,y) f(x+iy)=u(x,y)+iv(x,y), 在有向闭曲线 L L L 上的积分, 有
∮ L f ( x + i y ) d ( x + i y ) = ∮ L u d x − v d y + i ∮ L v d x + u d y \oint_Lf(x+iy)\text d(x+iy)= \oint_Lu\text dx-v\text dy+i\oint_Lv\text dx+u\text dy Lf(x+iy)d(x+iy)=Ludxvdy+iLvdx+udy

当有向曲线封闭并围成曲面 D D D 时, 我们有格林公式
∮ L P d x + Q d y = ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y \oint_LP\text dx+Q\text d y=\iint_D\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\text dx\text dy LPdx+Qdy=D(xQyP)dxdy

继而
∮ L u d x − v d y + i ∮ L v d x + u d y = ∬ D ( − v 1 ′ − u 2 ′ ) d x d y + i ∬ D ( u 1 ′ − v 2 ′ ) d x d y \oint_Lu\text dx-v\text dy+i\oint_Lv\text dx+u\text dy = \iint_D(-v'_1-u'_2)\text dx\text dy+i\iint_D(u'_1-v'_2)\text dx\text dy Ludxvdy+iLvdx+udy=D(v1u2)dxdy+iD(u1v2)dxdy

而函数是解析的, 有
u 1 ′ − v 2 ′ = 0 , u 2 ′ + v 1 ′ = 0 u'_1-v'_2=0, u'_2+v'_1=0 u1v2=0,u2+v1=0

最终
∮ L f ( x + i y ) d ( x + i y ) = 0 \oint_Lf(x+iy)\text d(x+iy)=0 Lf(x+iy)d(x+iy)=0

即解析函数在任意闭曲线内的积分为0.

亚纯函数的闭曲线积分

函数在区域 D D D 内并非处处解析, 但不解析的点均为孤立点时, 称函数为亚纯函数. 不解析的点称为奇点.

求解亚纯函数的闭曲线积分的一般方法是

    1. 将函数在每个奇点处做幂级数展开
    1. 求解幂级数中各个幂函数在对应的奇点处的闭曲线积分
    1. 求和得到原函数积分结果

设亚纯函数在闭曲线 L L L 包围的区域 D D D 内含有不解析点 A 1 A_1 A1, A 2 A_2 A2, ⋯ \cdots .
不含奇点时, 函数恢复为解析函数. 其积分为
∫ L ′ f ( z ) d z = ∮ L f ( z ) d z − ∑ i = 1 n ∮ A i f ( z ) d z = 0 \int_{L'}f(z)\text dz=\oint_Lf(z)\text dz-\sum_{i=1}^n\oint_{A_i}f(z)\text dz=0 Lf(z)dz=Lf(z)dzi=1nAif(z)dz=0

亚纯函数的闭曲线积分转化为奇点的闭曲线积分的和
∮ L f ( z ) d z = ∑ i = 1 n ∮ A i f ( z ) d z \oint_Lf(z)\text dz=\sum_{i=1}^n\oint_{A_i}f(z)\text dz Lf(z)dz=i=1nAif(z)dz

其中 ∮ A i f ( z ) d z \oint_{A_i}f(z)\text dz Aif(z)dz 是包围 A i A_i Ai 点的任意小闭合曲线的积分.

奇点的闭曲线积分

函数的幂级数展开

提到函数的幂级数展开, 我们一般首先想到的是泰勒级数.

  • (11) 实函数的泰勒级数可直接扩展数域到复数

一些常见的函数在 0 0 0 处的幂级数展开如下
e z = 1 + z + 1 2 z 2 + 1 6 z 3 + ⋯ e^z=1+z+\frac 12z^2+\frac 16z^3+\cdots ez=1+z+21z2+61z3+

1 1 − z = 1 + z + z 2 + z 3 + ⋯ \frac 1{1-z}=1+z+z^2+z^3+\cdots 1z1=1+z+z2+z3+

Ln ( z + 1 ) = z − 1 2 z 2 + 1 3 z 3 − 1 4 z 4 + ⋯ \text{Ln}(z+1)= z-\frac 12z^2+\frac 13z^3-\frac 14z^4+\cdots Ln(z+1)=z21z2+31z341z4+

sin ⁡ z = z − 1 3 z 3 + 1 5 z 5 − 1 7 z 7 + ⋯ \sin z= z-\frac13z^3+\frac15z^5-\frac 17z^7+\cdots sinz=z31z3+51z571z7+

但泰勒级数有一个缺陷是无法在一些奇点处做幂级数展开. 如函数 1 z \dfrac 1z z1 0 0 0 处的展开.
对于这类函数, 通常将其乘上一个幂函数 ( z − z 0 ) n (z-z_0)^n (zz0)n 后就可以了做以往的泰勒展开了. 得到的级数再除去该幂函数, 即得到包含负数幂次的幂级数, 该广义的泰勒级数又称为洛朗级数.

可直接做泰勒展开的奇点称为可去奇点.
乘上幂函数 ( z − z 0 ) n (z-z_0)^n (zz0)n 后才能做泰勒展开的点称为极点, 取 n n n 的最小值作为极点的阶, 并称之为 n n n 阶极点.
n n n 没有最小值, 则称该奇点为本质奇点.

  • (12) 幂函数在其奇点处的洛朗级数等于其自身

对于任意的亚纯函数, 由于任意阶可导, 在任意点处总可做泰勒展开或洛朗展开, 最终总能得到对应的幂级数.

幂函数的闭曲线积分

幂函数除在其奇点 z 0 z_0 z0 处(若存在)不解析, 在其他的任意点处处处解析. 有
∮ z 1 ( z − z 0 ) n d z = 0 \oint_{z_1}(z-z_0)^n\text dz = 0 z1(zz0)ndz=0

其中 z 1 ≠ z 0 z_1\ne z_0 z1=z0 n ≥ 0 n\ge 0 n0.
围绕奇点做积分路径 z = z 0 + r e i θ z=z_0+re^{i\theta} z=z0+reiθ, θ \theta θ 0 0 0 2 π 2\pi 2π, 则幂函数在奇点处的闭曲线积分为
∮ z 0 ( z − z 0 ) n d z = ∫ 0 2 π ( z − z 0 ) n d ( z 0 + r e i θ ) = ∫ 0 2 π ( r e i θ ) n d ( r e i θ ) = ∫ 0 2 π r n e i n θ ⋅ i r e i θ d θ = i r n + 1 ∫ 0 2 π e i θ ( n + 1 ) d θ = i r n + 1 ∫ 0 2 π { cos ⁡ [ θ ( n + 1 ) ] + i sin ⁡ [ θ ( n + 1 ) ] } d θ \begin{aligned} \oint_{z_0}(z-z_0)^n\text dz &= \int_0^{2\pi}(z-z_0)^n\text d(z_0+re^{i\theta}) \\ &=\int_0^{2\pi}(re^{i\theta})^n\text d(re^{i\theta}) \\ &=\int_0^{2\pi}r^ne^{in\theta}\cdot ire^{i\theta}\text d\theta \\ &=ir^{n+1}\int_0^{2\pi}e^{i\theta(n+1)}\text d\theta \\ &=ir^{n+1}\int_0^{2\pi}\left\{\cos[\theta(n+1)]+i\sin[\theta(n+1)]\right\}\text d\theta \\ \end{aligned} z0(zz0)ndz=02π(zz0)nd(z0+reiθ)=02π(reiθ)nd(reiθ)=02πrneinθireiθdθ=irn+102πeiθ(n+1)dθ=irn+102π{cos[θ(n+1)]+isin[θ(n+1)]}dθ
n = − 1 n=-1 n=1 时, 原式化为 ∮ z 0 ( z − z 0 ) n d z = i ∫ 0 2 π d θ = 2 π i \oint_{z_0}(z-z_0)^n\text dz =i\int_0^{2\pi}\text d\theta = 2\pi i z0(zz0)ndz=i02πdθ=2πi

n ≠ − 1 n\ne -1 n=1 时, 原式化为 ∮ z 0 ( z − z 0 ) n d z = i ⋅ 0 = 0 \oint_{z_0}(z-z_0)^n\text dz =i \cdot 0 = 0 z0(zz0)ndz=i0=0

留数定理

设亚纯函数在某点 z 0 z_0 z0 处的幂级数为
f ( z ) = ∑ k = − ∞ + ∞ r k ( z − z 0 ) k f(z)=\sum_{k=-\infin}^{+\infin}r_{k}(z-z_0)^k f(z)=k=+rk(zz0)k

定义函数在该某点处的留数 Res ( f ; z 0 ) = r − 1 \text{Res}(f;z_0)=r_{-1} Res(f;z0)=r1

由前述亚纯函数的闭曲线积分和奇点的闭曲线积分, 得到留数定理

在任意点 z 0 z_0 z0 的闭曲线积分为
∮ z 0 f ( z ) d z = 2 π i ⋅ Res ( f ; z 0 ) \oint_{z_0}f(z)\text dz=2\pi i\cdot\text{Res}(f;z_0) z0f(z)dz=2πiRes(f;z0)

在闭合曲线 L L L 的曲线积分为
∮ L f ( z ) d z = 2 π i ∑ k = 1 n Res ( f ; z k ) \oint_{L}f(z)\text dz=2\pi i\sum_{k=1}^n\text{Res}(f;z_k) Lf(z)dz=2πik=1nRes(f;zk)

其中 z 1 z_1 z1, z 2 z_2 z2, ⋯ \cdots , z n z_n zn 是函数所有的奇点.

柯西积分公式

设亚纯函数在某点 z 0 z_0 z0 处的幂级数为
f ( z ) = ∑ k = − ∞ + ∞ r k ( z − z 0 ) k f(z)=\sum_{k=-\infin}^{+\infin}r_{k}(z-z_0)^k f(z)=k=+rk(zz0)k

令其乘上-1次的幂函数, 得到
f ( z ) z − z 0 = ∑ k = − ∞ + ∞ r k ( z − z 0 ) k − 1 = ∑ k = − ∞ + ∞ r k ′ ( z − z 0 ) k \frac{f(z)}{z-z_0}=\sum_{k=-\infin}^{+\infin}r_{k}(z-z_0)^{k-1}=\sum_{k=-\infin}^{+\infin}r'_{k}(z-z_0)^{k} zz0f(z)=k=+rk(zz0)k1=k=+rk(zz0)k

再在 z 0 z_0 z0 做闭曲线积分得到
∮ z 0 f ( z ) z − z 0 d z = 2 π i ⋅ Res ( f ( z ) z − z 0 ; z 0 ) = 2 π i ⋅ r − 1 ′ = 2 π i ⋅ r 0 \oint_{z_0}\frac{f(z)}{z-z_0}\text dz=2\pi i\cdot\text{Res}(\frac{f(z)}{z-z_0};z_0)=2\pi i\cdot r'_{-1}=2\pi i \cdot r_0 z0zz0f(z)dz=2πiRes(zz0f(z);z0)=2πir1=2πir0

其中显然 r 0 = f ( z 0 ) r_0=f(z_0) r0=f(z0), 由此得到柯西积分公式
f ( z 0 ) = 1 2 π i ∮ z 0 f ( z ) z − z 0 d z f(z_0)= \frac{1}{2\pi i}\oint_{z_0}\frac{f(z)}{z-z_0}\text dz f(z0)=2πi1z0zz0f(z)dz

类似地, 乘上不同负次幂的幂函数, 可得到高阶导数下的柯西积分公式(亦可原公式两侧求导等方法得到)
f ′ ( z 0 ) = 1 2 π i ∮ z 0 f ( z ) ( z − z 0 ) 2 d z f'(z_0)= \frac{1}{2\pi i}\oint_{z_0}\frac{f(z)}{(z-z_0)^2}\text dz f(z0)=2πi1z0(zz0)2f(z)dz

f ′ ′ ( z 0 ) = 2 2 π i ∮ z 0 f ( z ) ( z − z 0 ) 3 d z f''(z_0)= \frac{2}{2\pi i}\oint_{z_0}\frac{f(z)}{(z-z_0)^3}\text dz f(z0)=2πi2z0(zz0)3f(z)dz

f ( n ) ( z 0 ) = n ! 2 π i ∮ z 0 f ( z ) ( z − z 0 ) n + 1 d z f^{(n)}(z_0)= \frac{n!}{2\pi i}\oint_{z_0}\frac{f(z)}{(z-z_0)^{n+1}}\text dz f(n)(z0)=2πin!z0(zz0)n+1f(z)dz

应用

TODO

定积分

力场和势场

电工

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
东南亚位于我国倡导推进的“一带一路”海陆交汇地带,作为当今全球发展最为迅速的地区之一,近年来区域内生产总值现了显著且稳定的增长。根据东盟主要经济体公布的最新数据,印度尼西亚2023年国内生产总值(GDP)增长5.05%;越南2023年经济增长5.05%;马来西亚2023年经济增速为3.7%;泰国2023年经济增长1.9%;新加坡2023年经济增长1.1%;柬埔寨2023年经济增速预计为5.6%。 东盟国家在“一带一路”沿线国家中的总体GDP经济规模、贸易总额与国外直接投资均为最大,因此有着举足轻重的地位和作用。当前,东盟与中国已互相成为双方最大的交易伙伴。中国-东盟贸易总额已从2013年的443亿元增长至 2023年合计超逾6.4万亿元,占中国外贸总值的15.4%。在过去20余年中,东盟国家不断在全球多变的格局里面临挑战并寻求机遇。2023东盟国家主要经济体受到国内消费、国外投资、货币政策、旅游业复苏、和大宗商品出口价企稳等方面的提振,经济显现出稳步增长态势和强韧性的潜能。 本调研报告旨在深度挖掘东南亚市场的增长潜力与发展机会,分析东南亚市场竞争态势、销售模式、客户偏好、整体市场营商环境,为国内企业出海开展业务提供客观参考意见。 本文核心内容: 市场空间:全球行业市场空间、东南亚市场发展空间。 竞争态势:全球份额,东南亚市场企业份额。 销售模式:东南亚市场销售模式、本地代理商 客户情况:东南亚本地客户及偏好分析 营商环境:东南亚营商环境分析 本文纳入的企业包括国外及印尼本土企业,以及相关上下游企业等,部分名单 QYResearch是全球知名的大型咨询公司,行业涵盖各高科技行业产业链细分市场,横跨如半导体产业链(半导体设备及零部件、半导体材料、集成电路、制造、封测、分立器件、传感器、光电器件)、光伏产业链(设备、硅料/硅片、电池片、组件、辅料支架、逆变器、电站终端)、新能源汽车产业链(动力电池及材料、电驱电控、汽车半导体/电子、整车、充电桩)、通信产业链(通信系统设备、终端设备、电子元器件、射频前端、光模块、4G/5G/6G、宽带、IoT、数字经济、AI)、先进材料产业链(金属材料、高分子材料、陶瓷材料、纳米材料等)、机械制造产业链(数控机床、工程机械、电气机械、3C自动化、工业机器人、激光、工控、无人机)、食品药品、医疗器械、农业等。邮箱:market@qyresearch.com

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值