数学分析、实分析(实变函数论)、复分析(复变函数论)是什么关系?

(国内的)数学分析主要是讨论实数、连续函数、极限、级数、微分导数、黎曼积分等等经典微积分的内容,它其实就是严格化的经典微积分(单元+多元);实分析主要是讨论测度和积分,特别地主要讨论勒贝格测度和积分;复变函数主要讨论全纯函数和半纯函数的性质;复分析一般是选修课程,我在复旦旁听的时候主要是讨论了单复变的一些进阶课题,比如单叶函数相关的Koebe 1/4定理,还有那个an<=n的好像叫Bieberbach猜想/Loewner定理,然后还有Picard大/小定理等等。

从教学实践上来说,一般是学完数分以后再同时学实分析(国内等价于实变)和复变(两者独立教学),学完复变之后再学复分析。但从逻辑关系上来说,不学数分直接学实变也是可以的,因为勒贝格测度和积分的定义实际上是独立于黎曼积分的,只是它整套机器更为庞大而已。当然数分和实变的侧重点是不一样的,数分侧重于计算技巧的训练(更具体),而实变侧重于理论体系的构建(更抽象);所以对于能力足够的学生来说,可以把数分和实变放在一起学,两边相互参考,理解更深,事半功倍。

数学分析

狭义上的数学分析,指的其实就是微积分背后的原理。普通的微积分课程一般是教你怎么算、怎么用,而“数学分析”则是另外告诉你这样一套微积分工具背后的运行原理是什么。相当于,一个是教你怎么打游戏,你的纸片人老婆怎么玩、怎么操作,一个是告诉你游戏是怎么码出来的、纸片人老婆的模型是怎么用3DMax捏出来的;一个是教你学会开车,然后告诉你红灯停绿灯行,但你不知道为什么要这样做,一个是教你汽车的运行与装配原理。

广义的数学分析,我认为包含了微积分学、实变函数论与复变函数论。也就是说,我认为广义的数学分析包含了本科的线性泛函分析之前的所有分析学知识。

当然,也有学者把流形上的分析也放在数学分析中去,比如卓里奇的《数学分析》……其实也没什么不可以的,把流形上的微积分视为普通向量微积分在高维弯曲空间中的推广,也行。

复变函数论或者称复分析

之所以说“复变函数是本科数学中最漂亮、最和谐的理论”,是因为普通微积分学的许多结论、公式都可以非常顺畅地推广到复变(全纯)函数中去(比如牛顿-莱布尼茨公式),在这个推广过程中,逻辑推演过程都是如履平地般舒展开来,令人感到非常舒适惬意。并且针对复变函数本身又有非常多优美的结论,这些结论又可以反哺微积分学(比如留数定理计算实积分),整门课程学下来令人心旷神怡,因为:1. 思维基本不会遇到特别大的阻碍,2. 整个学科的脉络也很清晰,3. 用处也是显而易见。

当然,我这里说的仅限于单变量复变函数论

多元复分析没学过,听说特高深,需要很多不算浅的拓扑学知识)

实分析或者称实变函数论——测度论

实变函数,或者称实分析,一般指“Lebesgue积分、微分理论”,它所处理的函数对象都是不太友好的、长相怪异的妖孽,逻辑的起点也是“Lebesgue测度”这样的抽象概念,并且前期涉及大量的集合论演算,让人很难把它跟“微积分学”联系起来(起码初学的时候是这样),所以让人感觉很……ugly……但是一旦跨过这个坎,你的分析能力就会上一个质变台阶(差不多从青铜到白银吧),所以对于分析学而言,实变函数就是一个分水岭,熟悉了这样一套逻辑,把它推广到更一般的可测空间中去,就成了测度论,这是现代高等概率论的基础。

所以有的学者会把概率论也放到分析学门下,这样恰不恰当姑且不论,但道理还是有的。




复变函数、实分析、复分析、数学分析是什么关系? - 知乎 

现代数学基础31:多复变函数论 作者:萧荫堂,陈志华,钟家庆 著 出版时间:2013年版 内容简介   《现代数学基础31:多复变函数论》包含多复变函数研究中分析、层论与复几何这三个最主要方面的主要研究成果与方法。较之国内外相应的多复变函数著作,《现代数学基础31:多复变函数论》的内容更全面,而且通过阅读本书,读者可以充分了解多复变函数与几何、拓扑、方程和分析等相关分支的交叉关系。《现代数学基础31:多复变函数论》的撰写尽可能地适于自学之用,主要读者对象为数学系高年级本科生、研究生与青年教师,同时也可供其他理工科专业本科生、研究生、青年教师及相关工程技术人员学习参考之用。 目录 第一章 全纯域与全纯凸域 §1.1 全纯域 §1.2 全纯凸域 第二章 拟凸域 §2.1 拟凸域 §2.2 多次调和函数 第三章 L2估计 §3.1 L2方法 §3.2 Levi问题 §3.3 Cousin问题与除法问题 §3.3.1 第一Cousin问题 §3.3.2 第二Cousin问题 §3.3.3 除法问题 第四章 层与上同调 §4.1 层 §4.2 层的上同调群 第五章 δ方程解的一致估计 第六章 解析簇 §6.1 全纯函数的局部环 §6.2 Hilbert零点定理 第七章 凝聚层 §7.1 凝聚层 §7.2 0ka定理 第八章 多圆域的上同调论 §8.1 Dolbeault引理 §8.2 解析层的投影分解 §8.3 Cartan引理 第九章 Stein空间 §9.1 0ka定理 §9.2 Stein空间 §9.3 Cartan定理A,B 第十章 Hermite流形与Hermite向量丛 §10.1 全纯向量丛 §10.2 Hermite流形的几何 第十一章 Hodge定理 §11.1 Hodge定理 §11.2 Rellich定理,Garding不等式和Sobolev引理的证明 第十二章 消灭定理与嵌入定理 参考文献
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值