SLIC 超像素(SLICSuperpixels)
Radhakrishna Achanta, Appu Shaji, KevinSmith, Aurelien Lucchi,
Pascal Fua, and Sabine Susstrunk
摘要:
超像素在计算机视觉领域越来越流行。但是,低计算量的算法却很少。我们发明了一种原创的算法,使像素聚类为五维颜色和图像层,用来生成简洁整齐的超像素。我们的研究结果非常简单易用,效率很高,具备很好的实用价值。实验证明我们的算法计算消耗低,但是却达到或者超过了其他4种最新的(state-of-art)方法。这种结论是通过比较boundary recall和under-segmentation error得出的。
1.介绍:
超像素提供了一种便捷的方式来计算local features。他们通过获得图像中的redundancy来大幅度地减轻后续图像处理的复杂度。已经证明在深度估算(depth estimation),图像分割(image segmentation),骨架提取(skeletonization),人体模型估计(body modelestimation),目标定位(object localization)等等领域十分有效。
超像素要想实际应用必须要运算速度快,简单易用,并且生成高质量的分割。不幸的是,现在最新的超像素生成方法都不能同时满足上述的要求。有的方法计算量大,有的算法分割质量差,有的算法包含多重难调的参数。
我们在本文中提出的方法,简单的同时达到了高质量整齐的超像素分割,并且比最新的方法都要效率高。我们提出的算法叫simple linear iterative clustering(SLIC),采用的是当地像素聚类(local clustering),该像素是5维的(5-D space), 是通过定义CIELAB颜色空间(就是Lab颜色空间)中的L,a,b数值以及x,y像素坐标。提出的一种全新的距离计算方法加强了超像素形状的整齐性,可以同时用于彩色图像和灰度图像。SLIC很简单就能实现---唯一需要的参数就是设定超像素的个数。在伯克利标准数据库(Berkeley benchmark dataset)中实验表明,SLIC在产生相似或更好的分割时,效率大幅度提高。该结论通过standard boundary recall和under-segmentationmeasures得到的。
对于很多视觉任务来说,紧凑整齐的超像素,就像SLIC生成的那样,是非常需要的。例如,基于图的模型条件随机场(ConditionalRandom Fields (CRF)),当从像素图到超像素图的时候,可以看到巨大的速度提升,但是松散的无关的超像素会使表现