利用渐开线三等分任意角的方法和证明

要求:如果所示,以园心为A,半径为AC的园的渐开线作为辅助线,现在要把∠CAB三等分。

操作:利用渐开线三等分任意角∠CAB的尺规作图步骤:

1、以B点做切线,和渐开线相交于E;

2、在BE线段上做三等分点F,即BF=BE/3;

3、以A点为圆心,AF长为半径,相交渐开线于G;

4、以G点为圆心,BF长为半径,相交基圆于D;

5、连接AD,∠CAD即为∠CAB的三等分角。

证明

1、先证明△BAF与△DAG全等

根据作图,AB=AC=圆A的半径,AF=AG,BF=DG,所以△BAF与△DAG全等。又BE是垂直于AB的圆上点B的切线,所以∠FBA是直角,根据全等三角形的性质,∠ADG=∠FBA也是直角。

2、由渐开线的性质,直线BE的长度 = 园弧 BDC 的长度,直线DG的长度 = 园弧 DC 的长度,又因为DG=BF=BE/3,所以园弧DC的长度 = 园弧BDC 的长度/3,根据圆的弧度和角度的关系,∠CAD即为∠CAB的三等分角

总结:

伽罗瓦所证明的是,在不使用任何辅助线或用到除尺规外其他工具的前提下,不能在有限次操作内,使用尺规作图法三等分任意角,也就是说这三个限制只要有一个不成立,那么不能三等分任意角就不成立。

实际上只要引入渐开线,在有限次操作内,使用尺规作图法N等分任意角都是可行的,而且这种方法也同样可以解决化圆为方的问题。这样,通过引入渐开线就一举解决了三大几何作图问题中的两个“不可能”的难题,并且渐开线在物理上是很容易得到的,它的本质是一端绕基圆展开的线的端点所形成的轨迹,或者简单点说,平时大家用到的卷尺,就是渐开线所对应的物理实体。

内容概要:本文详细探讨了制造业工厂中两条交叉轨道(红色紫色)上的自动导引车(AGV)调度问题。系统包含2辆红色轨道AGV1辆紫色轨道AGV,它们需完成100个运输任务。文章首先介绍了AGV系统的背景目标,即最小化所有任务的完成时间,同时考虑轨道方向性、冲突避免、安全间隔等约束条件。随后,文章展示了Python代码实现,涵盖了轨道网络建模、AGV初始化、任务调度核心逻辑、电池管理模拟运行等多个方面。为了优化调度效果,文中还提出了冲突避免机制增强、精确轨道建模、充电策略优化以及综合调度算法等改进措施。最后,文章通过可视化与结果分析,进一步验证了调度系统的有效性可行性。 适合人群:具备一定编程基础对自动化物流系统感兴趣的工程师、研究人员及学生。 使用场景及目标:①适用于制造业工厂中多AGV调度系统的开发与优化;②帮助理解实现复杂的AGV调度算法,提高任务完成效率系统可靠性;③通过代码实例学习如何构建优化AGV调度模型,掌握冲突避免、路径规划电池管理等关键技术。 其他说明:此资源不仅提供了详细的代码实现理论分析,还包括了可视化工具性能评估方法,使读者能够在实践中更好地理解应用AGV调度技术。此外,文章还强调了任务特征分析的重要性,并提出了基于任务特征的动态调度策略,以应对高峰时段卸载站拥堵等情况。
内容概要:本文介绍了一个使用MATLAB编写的基于FDTD(时域有限差分)方法的电磁波在自由空间中传播的仿真系统。该系统采用了ABC(吸收边界条件)正弦脉冲激励源,并附有详细的代码注释。文中首先介绍了关键参数的选择依据及其重要性,如空间步长(dx)时间步长(dt),并解释了它们对算法稳定性精度的影响。接着阐述了电场磁场的初始化以及Yee网格的布局方式,强调了电场磁场分量在网格中的交错排列。然后详细讲解了吸收边界的实现方法,指出其简单而有效的特性,并提醒了调整衰减系数时需要注意的问题。最后,描述了正弦脉冲激励源的设计思路,包括脉冲中心时间宽度的选择,以及如何将高斯包络与正弦振荡相结合以确保频带集中。此外,还展示了时间步进循环的具体步骤,说明了磁场电场分量的更新顺序及其背后的物理意义。 适合人群:对电磁波传播模拟感兴趣的科研人员、高校学生及工程技术人员,尤其是那些希望深入了解FDTD方法及其具体实现的人群。 使用场景及目标:适用于教学演示、学术研究技术开发等领域,旨在帮助使用者掌握FDTD方法的基本原理实际应用,为后续深入研究打下坚实基础。 阅读建议:由于本文涉及较多的专业术语技术细节,建议读者提前熟悉相关背景知识,如电磁理论、MATLAB编程等。同时,可以通过动手实践代码来加深理解记忆。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值