集成学习-bagging

bagging集成学习中最为经典的算法之一。

Bagging算法的基本思想是:自助采样和投票表决

Bagging就是,有放回采样m个样本,这件事进行T(T一般是奇数)次,这样就得到了T个不相同的训练集,分别用于取训练一个基学习器。因为样本集的构成不同,这T个基学习器就是不同的。而测试集则用这T次自助采样都没有采到过的那部分样本构成。

投票表决:训练出的T个基学习器用于样本预测时,按少数服从多数给出答案。具体有绝对多数表决(至少有多于T/2个基学习器给出了同一答案)。

另外bagging算法主要是降低每一个分类器的误差,就间接降低了集成学习模型的方差。

下面是bagging算法的伪代码流程图:

流程图如下所示:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值