机器学习——PCA练习

本文通过鸢尾花数据集展示了PCA(主成分分析)的应用。首先,导入所需库并加载数据集,接着将数据分为特征和标签。接着创建PCA实例,保留两个主成分,并输出其方差百分比。最后,使用特定颜色对数据进行分组并进行可视化展示。
摘要由CSDN通过智能技术生成

数据集

这里用到的数据集是鸢尾花数据集

题目要求

1. 导入必要的库
2. 加载sklearn库自带的鸢尾花数据集
3. 将数据集划分为样本特征和样本类型
4. 构建PCA实例,其中n_components设置为2
5. 传入数据给模型
6. 打印输出所保留的n个成分各自的方差百分比
7. 对花的颜色进行特征分组,分为:[‘navy’, ‘turquoise’, ‘darkorange’]
8. 循环打印输出结

代码如下

import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.decomposition import PCA

# 读取数据
data = load_iris(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值