数据集
这里用到的数据集是鸢尾花数据集
题目要求
1. 导入必要的库
2. 加载sklearn库自带的鸢尾花数据集
3. 将数据集划分为样本特征和样本类型
4. 构建PCA实例,其中n_components设置为2
5. 传入数据给模型
6. 打印输出所保留的n个成分各自的方差百分比
7. 对花的颜色进行特征分组,分为:[‘navy’, ‘turquoise’, ‘darkorange’]
8. 循环打印输出结
代码如下
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.decomposition import PCA
# 读取数据
data = load_iris(