文献名称
Research on the scheduling method of ground resource under uncertain arrival time
研究内容
文章讨论了机场地面服务调度问题。作者分析了机场地面服务的不确定性,并提出了一种具有前瞻性和反应性的调度方法。这种调度方法分为两个阶段:前瞻性调度(Proactive scheduling)和反应性调度(Reactive scheduling)。在前瞻性调度阶段,需要尽可能全面地考虑问题,以提供一个全局基准计划。反应性调度阶段在基准计划不适用时触发,快速调整计划。为了解决前瞻性调度模型,作者设计了一种改进的ALNS算法。通过模拟实验,作者发现在资源相对紧张时,前瞻性反应性调度(PRS)可以获得更好的鲁棒性调度方案;当资源相对充足时,反应性调度(RHS)可以优化资源转移时间。
现有解决方法
-
元启发式算法:遗传算法和粒子群算法在确定问题时非常受欢迎,通过模仿自然选择和粒子群的行为来迭代出最优解。
- 蒙特卡洛模拟:一种依赖大量随机样本来预估系统可能行为的方法。
- 变邻域搜索方法:可变邻域搜索(Variable Neighborhood Search, VNS)方法扩展了邻域搜索的概念,通过系统地改变邻域结构来找到解决方案。在调度问题中,VNS通过改变调度顺序或调度时间等参数,不断探索可能的调度方案。
模型搭建
定义参数变量β:单位时间转移成本;e:服务最早到达时间;l:服务最新到达时间;θ:服务缓冲时间;M:一个大整数;N:服务集合;G:资源集合;H:服务链等相关符号和参数。
设计优化目标:最小化总服务拖延时间和资源调度成本。
设定约束条件:资源分配约束、服务开始时间约束、服务拖延时间约束等。
算法步骤:
算法的核心逻辑是类似于李等人提出的进化方法,它通过以下步骤的循环来寻找满足条件的解决方案:
- 分解:将问题分解为更易于管理的小部分。
- 进化破坏:有选择性地破坏当前的解决方案,删除一些决策以创造破坏。
- 随机重组:在破坏的基础上,随机地添加新的决策来修复解决方案。
- 评分接受:对修复后的解决方案进行评估,并根据其性能来决定是否接受。
(此启发式算法允许根据特定问题的特点定制破坏和修复操作符。其优势在于能够快速地提供解决方案,尤其是在解决中大规模问题时效率更高)
研究框架
框架1:前瞻性调度
核心目标是在预测服务到达时间存在不确定性的情况下,生成一个具有鲁棒性的调度计划。前瞻性调度模型(PSM)旨在最小化服务延迟时间和资源转移时间成本,具体来讲:
-
目标定义:PSM的目标是最小化服务延迟时间和资源转移时间的总成本,这反映在模型中单位时间延迟成本(α)和单位时间转移成本(β)的设定上。
-
参数和决策变量设置:在构建PSM时,加入了如下参数和决策变量:
- 服务 i 的最早到达时间(ei)
- 服务 i 的最迟到达时间(li)
- 每项服务的单位时间延迟成本(α)
- 每项资源转移的单位时间转移成本(β)
- 调度方案需要满足的资源数量和服务需求量(ri)
- 考虑的缓冲时间(θi)
-
缓冲时间和不确定性覆盖:前瞻性调度阶段考虑了服务到达时间的不确定性,并引入了缓冲时间(θi)。缓冲时间的设置是基于服务到达时间的离散概率分布和预设的覆盖率要求(η)所确定的。
-
生成基线调度计划:通过以上步骤,前瞻性调度阶段生成的基线调度计划考虑了服务到达时间的不确定性,从而提高了整个调度方案的鲁棒性。
前瞻性调度阶段使用自适应大规模邻域搜索(ALNS)的优化算法。ALNS算法在一定条件下,可以比传统的GUROBI算法更有效的找到全局最优解。
图1:使用ALNS和GUROBI算法的边界解对比
图2:ALNS和GUROBI算法在不同问题规模下的计算结果
从图1和图2可以看出,在静态调度问题上,ALNS算法的求解效率和求解质量都显著优于其他常见算法。
框架2:反应性调度
与前瞻性调度阶段寻找全局最优解不同,反应性调度阶段则侧重于实时响应可能的异常情况,并对调度方案进行微调。
具体来说,其分为以下几个步骤:
-
在线/实时调整:反应调度依赖于实时数据和情况的更新,在基线计划执行过程中不断进行调整,以适应可能发生的变化。
-
应对现场情况:由于航空公司地面资源调度可能会遇到不同的现场问题,如设备延误、资源短缺等,反应调度能够动态处理这些情况,以避免服务中断或延误。
-
调度提前时间的影响:资源传输时间在调度过程中不可忽视,提前时间的长短对于反应调度的有效性至关重要。调度提前时间可以影响到调度计划的灵活性和响应能力。
图3:反应性调度图
算法设计
基于上面两个框架,设计如下算法步骤:
-
初始化参数:根据具体问题设定参数值,如α、β、γ、δ、σ、T0、IMax、ε、mMax,这些参数控制算法性能。
-
生成初始解:使用贪婪算法生成初始解,该算法在构建初始解时,会考虑插入位置产生的延迟成本。初始解的构建步骤包括初始化任务、随机选择任务、为每个服务链计算插入成本以及更新任务。
-
更新子算法权重:在每一个阶段更新子算法的权重。
-
启用移除子算法:随机启用一个移除子算法去移除服务。
-
使用修复子算法:应用修复子算法来修复服务。
-
接受或更新新解决方案:根据概率接受或更新新的解决方案。
-
输出最终解决方案:在算法完成后输出最终解决方案。
结论
研究引入了主动和反应式调度策略,以应对机场地面保障服务到达时间的不确定性问题。这些策略都考虑到了不确定性,为调度问题提供了有效的解决路径。
前瞻性调度策略通过考虑不确定性覆盖概念来优化调度。这种策略致力于发展一种更加鲁棒的基准计划,可以在不可预测的环境中保持其有效性。
为了有效且快速地解决前景调度模型问题,研究者使用了改进版的ALNS算法。这种算法展现了高效地解决问题的能力,尤其是在解决大规模问题时,相较于Gurobi等传统方法更为高效。
使用来自中国南部国际机场的实际数据进行模拟测试,以验证策略在不确定环境下的实际效果。测试结果显示,主动和反应式策略能在资源相对紧张时更好地利用资源空闲时间,并制定出具有更好鲁棒性的基准计划。
综上所述,研究表明主动和反应式策略能够更好地处理机场地面保障服务的不确定性问题,并同时能指导机场地面保障资源的分配和利用。