首先那个程序是送给你的40分暴力.
先看一下他题意中的题意,我们发现答案其实等于这个式子
Ans=∑i∑jij(n−i+1)(m−j+1)
就相当于对于一个点(i,j),包括他的矩阵有(n-i+1)(m-j+1)种.
然后我们做一下变形
Ans=(∑i(n−i+1)i)∗(∑jj(m−j+1))
发现这是两个形式完全相同的式子. 到了这一步我们就可以O(n)得到80分了.
所以我们就可以考虑如何求
F(i)=∑i(n−i+1)i
将式子进行变形,得到
F(i)=(n−1)∑ii−∑ii2
然后我们有平方和式子
∑ii2=n(n+1)(2n+1)/6
别问我怎么证明的,我也不知道
然后就可以O(1)求了.
#include <cstdio>
#include <iostream>
#define MO 1000000007
#define sg(x) ((1+(x))*(x)/2%MO)
using namespace std;
long long n,m,ans;
long long sqrtSum(long long n) {
return n*(n+1)%MO*(2*n+1)%MO*166666668%MO;
}
long long cnt(long long x) {
return (MO+(x+1)*sg(x)%MO-sqrtSum(x))%MO;
}
int main() {
freopen("loop.in","r",stdin);
freopen("loop.out","w",stdout);
cin>>n>>m;
n%=MO; m%=MO;
cout<<cnt(m)*cnt(n)%MO<<endl;
}