[文献阅读]—Probing Pretrained Language Models for Lexical Semantics

该研究通过5个词汇任务考察预训练模型中的词汇信息,包括词义相似度、词类比解决、双语词汇诱导、跨语言信息检索和词汇关系预测。结果表明,预训练模型在词汇信息建模上表现出语言和任务依赖性,词汇信息主要集中在低层参数中。对于单语任务,预训练模型优于传统fastText,而在双语任务中,fastText表现更优。此外,单语预训练模型能为不同语种的语义相似单词学习到相似表示。
摘要由CSDN通过智能技术生成

前言

在这里插入图片描述

论文地址:https://aclanthology.org/2020.emnlp-main.586.pdf

前人工作&存在问题

预训练模型包含丰富信息,但问题是:预训练模型中的单词是否还包含了单词独立的、single的、type-level的、lexical的信息?关于这一点的探究工作较少。

本文贡献

本文使用5个词汇任务来探究预训练模型中的词汇信息:

  • lexical semantic similarity(LSIM):单语,斯皮尔曼系数,计算单词对的人为评估和cosine相似度之间的相关程度
  • word analogy resolution(WA):单语,precision@1指标,计算 给定 wa-wb:wc-x,预测x的精确度
  • bilingual lexicon induction(BLI):双语,Mean reciprocal rank指标,计算 给定source单词,map对齐之后,搜索到对应的target单词的分数。map可使用训练得到的vecmap
  • cross-lingual information retrieval(CLIR):双语,Mean Average Precision指标,BLI的document级别
  • lexical relation prediction(RELP):单语,Micro-averaged F1分数,计算 给定单词对,引入外部分类模型,预测单词间关系(synonymy, antonymy, hypernymy, meronymy, plus no relation))的F1值

回答了4个问题:

  • 预训练模型的词汇信息建模能力是否语言独立?任务独立?
  • 词汇信息被容纳于特定层参数还是分布在不同位置?
  • 预训练模型中导出的静态词嵌入和传统的fastText词嵌入的区别
  • 在不同语种上训练的单语预训练模型对于不同语种中语义相似的单词,是否学到了相似的表示?

具体方法

从PLM中抽取单词向量的策略如下,考虑:

  • 单语PLM还是multilingual PLM
  • 对于一个word,使用M个不同的句子,对于每一个句子,通过token embedding的平均得到上下文的word embedding,再对M个word embedding做平均。M = 1 还是 M > 1
  • 平均时是否加入[CLS][SEP] token embedding
  • 平均不同层,还是取单层的output

在这里插入图片描述

图1 抽取策略

具体实验

Q1\Q2\Q3+抽取策略结论

结论总结1(针对“具体实验”中抽取向量的策略):

  • 单语PLM的词汇信息更强(MONO VS MBERT)
  • PLM结合了丰富上下文的词汇信息更有用(ISO VS AOC);结合较少的上下文就可以得到有用的词汇信息了(AOC-10 VS AOC-100)
  • special token作用不大(NOSPEC VS WITHCLS VS ALL)
  • 取低层做平均得到更有用的词汇信息(n<=…)

结论总结2(针对Q1\Q2\Q3):

  • Q1:语言独立?任务独立?: 虽然总体来说MONO > MULTI; AOC > ISO; NOSPEC > ALL, WITHCLS,但是对于不同的语言、不同的任务,需要采取不同的抽取单词向量的策略,才能得到最好的词汇信息建模表现
  • Q2:特定层参数?分不同位置?:分不同位置,词汇信息集中在低层
  • Q3:预训练模型?FastText?:对于单语的任务(LSIM\WA\RELP)预训练模型相对更好,对于双语的任务(需要vecmap)FastText更好

在这里插入图片描述

图2 Q1\Q2\Q3+抽取策略结论

Q4+层之间相似度

结论总结3:

  • Q4: 单语PLM也为跨语种单词对学到了相似的表示;表示的相似度取决于语种相似度(不同语种是近似同构关系);
  • 相邻层相似
    在这里插入图片描述
图2 Q4

在这里插入图片描述

图3 层之间相似度

问题

  • 词汇信息对于UNMT有什么直接作用?
  • 能否为不同语种各自训练单个预训练模型(lexion信息更强),同时加入显式的cross-lingual对齐方式,尽可能对齐到同一向量空间,用这两个预训练模型分别对encoder和decoder做初始化?
芯片测试是制造芯片过程中的一个关键步骤。芯片探测(chip probing)是芯片测试的一种方法。在芯片探测过程中,测试仪器会将电极接触到芯片的引脚,通过电子信号的传输和接收,测试仪器可以对芯片进行各种类型的测试。 芯片探测主要用于以下几个方面:连接性测试、电学特性测试、功能测试和性能测试。 连接性测试是芯片探测的第一步,用于检测芯片引脚和测试仪器的连接是否良好。这个过程通常会检查每个引脚的连通性和接触质量。如果引脚的连接存在问题,可能会导致芯片的功能异常或无法正常工作。 电学特性测试是芯片探测的主要目的之一,用于测量芯片的电学参数,如输入输出电阻、电容和电感等。这些参数的测试结果可以用来判断芯片的性能和质量,并且可以在后续设计和生产过程中进行优化和改进。 功能测试是通过对芯片的输入和输出进行刺激和观察,来验证芯片的功能是否满足设计要求。通过芯片探测,测试仪器可以模拟不同的输入条件,观察芯片的输出结果,以确定芯片是否按照设计规格正常工作。 性能测试是对芯片整体性能的评估。通过芯片探测,测试仪器可以测量芯片的功耗、时钟频率和工作温度等性能指标。这些测试结果可以用来评估芯片的性能是否满足需求,并在系统设计中选择合适的芯片。 总之,芯片探测是芯片测试过程的重要一步,可以帮助厂商评估芯片的质量、性能和功能是否符合设计要求。通过芯片探测,可以及早发现潜在的问题,并采取相应的措施来优化和改进芯片的设计和制造过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值