在线性回归中,β的最小二乘估计是 β ^ = ( X ′ X ) − 1 X ′ y \hat{\beta}=(X'X)^{-1} X'y β^=(X′X)−1X′y,其中 X X X为 n × ( p + 1 ) n×(p+1) n×(p+1)设计矩阵, y y y为 ( n × 1 ) (n×1) (n
对线性回归最小二乘估计的一点理解
最新推荐文章于 2021-05-26 18:31:24 发布
本文介绍了线性回归中β的最小二乘估计原理,通过数学推导揭示了y^是y在X列向量生成空间上的投影,详细阐述了投影向量b的求解过程,证实y^即为Xb。
摘要由CSDN通过智能技术生成