对线性回归最小二乘估计的一点理解

本文介绍了线性回归中β的最小二乘估计原理,通过数学推导揭示了y^是y在X列向量生成空间上的投影,详细阐述了投影向量b的求解过程,证实y^即为Xb。
摘要由CSDN通过智能技术生成

在线性回归中,β的最小二乘估计是 β ^ = ( X ′ X ) − 1 X ′ y \hat{\beta}=(X'X)^{-1} X'y β^=(XX)1Xy,其中 X X X n × ( p + 1 ) n×(p+1) n×(p+1)设计矩阵, y y y ( n × 1 ) (n×1) (n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值