[机器学习笔记] 如何通过最小二乘法求解?

本文介绍了如何使用最小二乘法进行一元线性回归模型的求解,通过解析模型公式和最小化残差平方和来确定最优的直线拟合,解释了最小二乘法在处理异常值敏感性以及求解过程中的数学原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们以一元线性回归模型来举例说明。
y = Ax + b +ε
其中 ε 为样本(x, y)的预测误差。
自变量x,斜率A,截距b,因变量y。

假设有N个训练样本,{(a1, b1), … , (an, bn)} 可表示为平面中的N个点,我们的目标是求一条直线,最佳拟合这 N 个点。
这里写图片描述
图片来源:https://www.zhihu.com/question/37031188

选择最佳直线的标准是:总的拟合误差(总残差)最小。
计算总残差有三种方式:
1) 所有训练样本的残差和,这种方式存在正负值相互抵消的问题。
2) 所有训练样本的残差绝对值和,绝对值的计算比较麻烦。
3) 所有训练样本的残差平方和,这是最小二乘法的原则。除了计算比较方便外,得到的估计量还具有优良特性。但是这种方法对异常值非常敏感。

我们选择最小二乘法来计算总残差,最常用的是普通最小二乘法( Ordinary Least Square,OLS)。
把模型计算公式,代入最小二乘法公式得到下面的公式:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值