OpenCV中使用kmeans算法的方法

实验基础

首先我们通过OpenCV中的随机数产生RNG,生成一些均匀分布的随机点,这些点的位置对应一副图像中的像素位置,然后使用kmeans算法对这些随机点进行分类,并计算出类簇的中心点。

随机产生的簇的数量是25之间的值,采样点的数量范围是1~1000,一维矩阵centers存放kmeans算法结束后,各个簇的中心位置。

在下面的例子程序中将用到以下的OpenCV函数
1、RNG::fill - 用随机数填充数组。

C++: void RNG::fill
(
	InputOutputArray mat,
	int distType, 
	InputArray a, 
	InputArray b, 
	bool saturateRange=false 
)

参数说明:
    mat - 2D或N维矩阵,注:当前方法不支持具有4个以上通道的矩阵。
    distType - 分布类型(RNG :: UNIFORM或RNG :: NORMAL)
    a - 第一分布参数;在均匀分布的情况下,这是一个包含范围的下边界;在正态分布的情况下,这是一个平均值。
    b - 第二分布参数;在均匀分布的情况下,这是一个非包含上边界,在正态分布的情况下,这是一个标准偏差(标准偏差矩阵或整个标准偏差矩阵的对角线)。
    saturateRange - 预饱和标志;仅用于均匀分配;如果为true,则该方法将首先将a和b转换为可接受的值范围(根据mat数据类型),然后将生成在[saturate(a),saturate(b))范围内的均匀分布的随机数,如果saturateRange = false ,该方法将在原始范围[a,b)中生成均匀分布的随机数,然后将其saturate,这意味着,例如,RNG().fill(mat_8u,RNG :: UNIFORM,-DBL_MAX,DBL_MAX)将由于范围(0,255)显着小于[-DBL_MAX,DBL_MAX),因此可能会产生大多数填充有0和255的数组。

2、randShuffle - 随机排列数组元素。

C++: void randShuffle
(
	InputOutputArray dst, 
	double iterFactor=1., 
	RNG* rng=0 
)

参数说明:
    dst - 输入/输出数字一维数组。
    iterFactor - 确定随机交换操作数量的比例因子(请参见下面的详细信息)。
    rng - 用于混洗的可选随机数生成器;如果为零,则使用theRNG()。

3、TermCriteria::TermCriteria - 构造函数

C++: TermCriteria::TermCriteria
(
	int type, 
	int maxCount, 
	double epsilon
)

参数说明:
   type - 终止条件的类型:TermCriteria::COUNT,TermCriteria::EPS或TermCriteria::COUNT + TermCriteria::EPS
   maxCount - 要计算的最大迭代次数或元素
   epsilon - 迭代算法停止的所需精度或参数更改
   criteria - 终止标准(已弃用的CvTermCriteria格式)。

4、kmeans - 查找聚类的中心,并对聚类周围的输入样本进行分组。

C++: double kmeans
(
	InputArray data, 
	int K, 
	InputOutputArray bestLabels, 
	TermCriteria criteria, 
	int attempts, 
	int flags, 
	OutputArray centers=noArray() 
)

参数说明:
   data - 用于聚类的数据。需要具有浮点坐标的N维点数组。此数组的示例可以是:
      - Mat points(count, 2, CV_32F);
      - Mat points(count, 1, CV_32FC2);
      - Mat points(1, count, CV_32FC2);
      - std::vector<cv::Point2f> points(sampleCount);
   K - 用来分割集合的集群数。
   labels - 输入/输出整数数组,用于存储每个样本的聚类索引。
   criteria - 算法终止标准,即最大迭代次数和/或所需精度。精度被指定为criteria.epsilon。一旦每个聚类中心在某个迭代上移动的距离小于criteria.epsilon,该算法就会停止。
    termcrit - 算法终止标准,即最大迭代次数和/或所需精度。
    attempts - 用于指定使用不同的初始标签执行算法的次数的标志。该算法返回产生最佳紧凑性的标签(请参见最后一个功能参数)。
    flags - 可以采用以下值的标志
      KMEANS_RANDOM_CENTERS - 在每次尝试中选择随机的初始中心。
      KMEANS_PP_CENTERS - 使用Arthur和Vassilvitskii进行的kmeans ++中心初始化。
      KMEANS_USE_INITIAL_LABELS - 在第一次(可能也是唯一的)尝试期间,请使用用户提供的标签,而不要从初始中心进行计算。对于第二次或更进一步的尝试,请使用随机或半随机中心。使用KMEANS _ * _ CENTERS标志之一来指定确切的方法。

代码

main.cpp

#include <opencv2\opencv.hpp>

using namespace cv;
using namespace std;

int main(int argc, char** argv)
{
	const int MAX_CLUSTERS = 5;
	Scalar colorTab[] =
	{
		Scalar(0, 0, 255),
		Scalar(0, 255, 0),
		Scalar(255, 100, 100),
		Scalar(255, 0, 255),
		Scalar(0,255, 255)
	};
	Mat img(500, 500, CV_8UC3);
	RNG rng(12345);  // 随机数产生器

	for (;;)
	{
		// 簇的数量
		int k, clusterCount = rng.uniform(2, MAX_CLUSTERS + 1);
		// 采样点的数量
		int i, sampleCount = rng.uniform(1, 1001);
		Mat points(sampleCount, 1, CV_32FC2), labels;   //产生的样本数,
				//实际上为2通道的列向量,元素类型为Point2f

		clusterCount = MIN(clusterCount, sampleCount);
		Mat centers(clusterCount, 1, points.type());    //用来存储聚类后的中心点

		//产生多高斯部分的随机采样点
		for (k = 0; k < clusterCount; k++) //产生随机数
		{
			Point center;
			center.x = rng.uniform(0, img.cols);
			center.y = rng.uniform(0, img.rows);
			Mat pointChunk = points.rowRange(k*sampleCount / clusterCount,
				k == clusterCount - 1 ? sampleCount :
				(k + 1)*sampleCount / clusterCount);   //最后一个类的样本数不一定是平分的,
													   //剩下的一份都给最后一类
			rng.fill(pointChunk, CV_RAND_NORMAL, Scalar(center.x, center.y), 
				Scalar(img.cols*0.05, img.rows*0.05));
				//每一类都是同样的方差,只是均值不同而已
			randShuffle(points, 1, &rng);   
			//因为要聚类,所以先随机打乱points里面的点,注意points和pointChunk是共用数据的。
			kmeans(points, clusterCount, labels,
				TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 10, 1.0),
				3, KMEANS_PP_CENTERS, centers);  
				//聚类3次,取结果最好的那次,聚类的初始化采用PP特定的随机算法。
			img = Scalar::all(0);

			for (i = 0; i < sampleCount; i++)
			{
				int clusterIdx = labels.at<int>(i);
				Point ipt = points.at<Point2f>(i);
				
				circle(img, ipt, 2, colorTab[clusterIdx], CV_FILLED, CV_AA);
			}
			imshow("clusters", img);
			char key = (char)waitKey();     //无限等待
			if (key == 27 || key == 'q' || key == 'Q') // 'ESC'
				break;
		}
		return 0;
	}
}

实验结果

结果一

CSDN图标
结果二
CSDN图标

结果三

CSDN图标
结果四
CSDN图标
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值