TensorFlow2中创建多层的tf.keras.Sequential函数的用法

线性堆叠的图层。

继承自:Model

用法:

tf.keras.Sequential
(
    layers=None,
    name=None
)

参数说明:

  • layers - 要添加到model的层列表。

首先创建一个模型结构:

model = keras.Sequential()

建立一个最终输出维度为10的分类结果的全连接神经网络。使用.add()函数进行各个层的堆叠:

# Adds a densely-connected layer with 64 units to the model:
model.add(keras.layers.Dense(64, activation='relu'))
# Add another:
model.add(keras.layers.Dense(64, activation='relu'))
# Add a softmax layer with 10 output units:
model.add(keras.layers.Dense(10, activation='softmax'))
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense

# 第一层可以接收一个“ input_shape”参数:
model = Sequential()
model.add(Dense(32, input_shape=(500,)))

# 然后,我们进行自动shape推断:
model.add(Dense(32))
import tensorflow as tf

x = tf.random.normal([2, 3])
model = tf.keras.Sequential([
        tf.keras.layers.Dense(2, activation = 'relu'),
        tf.keras.layers.Dense(2, activation = 'relu'),
        tf.keras.layers.Dense(2)
        ])

model.build(input_shape = [None, 3])

model.summary()  # 相当于一个print
# Model: "sequential_3"
# _________________________________________________________________
# Layer (type)                 Output Shape              Param #
# =================================================================
# dense_5 (Dense)              multiple                  8   ## 注:(keras为3*2) + (bias为2)
# _________________________________________________________________
# dense_6 (Dense)              multiple                  6
# _________________________________________________________________
# dense_7 (Dense)              multiple                  6
# =================================================================
# Total params: 20
# Trainable params: 20
# Non-trainable params: 0
# _________________________________________________________________

for p in model.trainable_variables:
    print(p.name, p.shape)
# dense_5/kernel:0 (3, 2)
# dense_5/bias:0 (2,)
# dense_6/kernel:0 (2, 2)
# dense_6/bias:0 (2,)
# dense_7/kernel:0 (2, 2)
# dense_7/bias:0 (2,)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>