hdu 6470 Count

Count

分析

  1. 一般递推式
    在这里插入图片描述
  2. 向量递推式
    在这里插入图片描述

代码

#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define MXM 6
#define mod(x) ((x)%123456789)
int L, M, f[6]={2, 1, 27, 9, 3, 1};
int A[MXM][MXM]={{1,2,1,0,0,0},{1,0,0,0,0,0},{0,0,1,3,3,1},{0,0,0,1,2,1},{0,0,0,0,1,1},{0,0,0,0,0,1}};
struct mat{ 
    LL d[MXM][MXM];
    mat operator*(const mat x){
        mat ret;
        LL tmp;
        for(int i = 0; i < MXM; i++){
            for(int j = 0; j < MXM; j++){
                tmp = 0;
                for(int k = 0; k < MXM; k++){
                    tmp = mod(tmp + d[i][k]* x.d[k][j]);
                }
                ret.d[i][j] = tmp;
            }
        }
        return ret;
    }
    void init_unit(){ // 初始化为单位矩阵
        for(int i = 0; i < MXM; i++)
            for(int j = 0; j < MXM; j++)
                d[i][j] = i == j ? 1 : 0;
    }
    void init(){ // 初始化为变换矩阵
        for(int i = 0; i < MXM; i++)
            for(int j = 0; j < MXM; j++)
                this->d[i][j] = A[i][j];          
    }
}ma;
mat matrixPow(mat base, LL pow){
    mat res;
    res.init_unit();
    while(pow){
        if(pow & 1) res = res * base;
        base = base * base;
        pow >>= 1;
    }
    return res;
}
int main(){
	LL T, n;;
    scanf("%lld", &T);
    while(T--){
        scanf("%lld", &n);
        if(n <= 2){
			printf("%d\n", mod(f[n]));
			continue;
		}
        ma.init();
        ma = matrixPow(ma, n-2);
        LL ans = 0;
        for(int i = 0; i < MXM; i++)
            ans = mod(ans+ma.d[0][i]*f[i]);
        printf("%lld\n", ans);
    }
	return 0;
}
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define MXM 6
#define mod(x) ((x)%123456789)
int L, M, f[6]={2, 1, 27, 9, 3, 1};
int A[MXM][MXM]={{1,2,1,0,0,0},{1,0,0,0,0,0},{0,0,1,3,3,1},{0,0,0,1,2,1},{0,0,0,0,1,1},{0,0,0,0,0,1}};
struct mat{ 
    LL d[MXM][MXM];
    mat operator*(const mat x){
        mat ret;
        LL tmp;
        for(int i = 0; i < MXM; i++){
            for(int j = 0; j < MXM; j++){
                tmp = 0;
                for(int k = 0; k < MXM; k++){
                    tmp = mod(tmp + d[i][k]* x.d[k][j]);
                }
                ret.d[i][j] = tmp;
            }
        }
        return ret;
    }
    LL operator*(const int* p){ // 乘列向量
        LL res = 0;
        for(int i = 0; i < MXM; i++) res = mod(res+d[0][i]*p[i]);
        return res;
    }
    void init_unit(){ // 初始化为单位矩阵
        for(int i = 0; i < MXM; i++)
            for(int j = 0; j < MXM; j++) d[i][j] = i == j ? 1 : 0;
    }
    void init(){ // 初始化为变换矩阵
        for(int i = 0; i < MXM; i++)
            for(int j = 0; j < MXM; j++) this->d[i][j] = A[i][j];          
    }
}ma;
mat matrixPow(mat base, LL pow){
    mat res;
    res.init_unit();
    while(pow){
        if(pow & 1) res = res * base;
        base = base * base;
        pow >>= 1;
    }
    return res;
}
int main(){
	LL T, n;;
    scanf("%lld", &T);
    while(T--){
        scanf("%lld", &n);
        if(n <= 2){
			printf("%d\n", mod(f[n]));
			continue;
		}
        ma.init();
        ma = matrixPow(ma, n-2);        
        printf("%lld\n", ma*f);
    }
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jpphy0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值