单特征与多特征 求梯度下降对比

#变量初始化。

#数据集
X_train = np.array([[2104, 5, 1, 45], [1416, 3, 2, 40], [852, 2, 1, 35]])
y_train = np.array([460, 232, 178])

#w,b初值
b_init = 785.1811367994083
w_init = np.array([ 0.39133535, 18.75376741, -53.36032453, -26.42131618])

1、求偏导

单变量求偏导:

def compute_gradient(x, y, w, b):
    """
    Computes the gradient for linear regression
    Args:
      x (ndarray (m,)): Data, m examples
      y (ndarray (m,)): target values
      w,b (scalar)    : model parameters
    Returns
      dj_dw (scalar): The gradient of the cost w.r.t. the parameters w
      dj_db (scalar): The gradient of the cost w.r.t. the parameter b
     """

    # Number of training examples
    m = x.shape[0]
    dj_dw = 0
    dj_db = 0

    for i in range(m):
        f_wb = w * x[i] + b
        dj_dw_i = (f_wb - y[i]) * x[i] #对于x[0]、x[1].... w求偏导
        dj_db_i = f_wb - y[i]  #对于x[0]、x[1]....   对b求偏导
        dj_db += dj_db_i  # 对b求偏导,1~m个数据的各个偏导的和及
        dj_dw += dj_dw_i
    dj_dw = dj_dw / m
    dj_db = dj_db / m

    return dj_dw, dj_db

多变量求偏导:

      多变量指有多个特征值,举房价预测例子来说就是,影响价格的因素还包括,卧室数量、房子年龄、楼层数、面积。这四个特征值共同决定房子价格。

      此时,预测函数模型就变成了

      偏导公式即变为:

      这里的w、X都为向量形式。w=[w1,w2,w3,w4]

 假设有4个特征值。

      有下标j就代表每个样例都有多个特征。每经历一次外循环,将本次样例的各个特征的dj_dw[j]求出来(j范围有特征值数量决定)。于是最终dj_dw也包括四个值,如下:

 

def compute_gradient(X, y, w, b): 
    """
    Computes the gradient for linear regression 
    Args:
      X (ndarray (m,n)): Data, m examples with n features
      y (ndarray (m,)) : target values
      w (ndarray (n,)) : model parameters  
      b (scalar)       : model parameter
      
    Returns:
      dj_dw (ndarray (n,)): The gradient of the cost w.r.t. the parameters w. 
      dj_db (scalar):       The gradient of the cost w.r.t. the parameter b. 
    """
    m,n = X.shape           #(number of examples, number of features)   #(3,4)即m=3 n=4
   # print(f"n={n}")
     
    dj_dw = np.zeros((n,))
    dj_db = 0.
  
  #i表示行,j表示列 。
#一共有m=3个样例,
    for i in range(m):                             
        err = (np.dot(X[i], w) + b) - y[i] #对于wi,i是几就需要将X[i]看作变量。然后求出f_wb=np.dot(X[i], w) + b。 预测值;w是一个数组,四个值
        for j in range(n):  
            #循环第一次j=0.内层循环进行,err分别*的是样例的特征数组X[x1,x2,x3,x4]中的四个列值。
            #每个样例的(f_wb-y[i])都是在外层循环中固定了的。但是求w的偏导还需额外*x[i]值。
            #对于一个特征值,求w偏导,一个样例只用*一次x特征值。对于4个不同特征值xi,一个样例要*4次x特征值。所以进行了n=4次内循环。一共有m=3个样例,所以外循环3次。
            dj_dw[j] = dj_dw[j] + err * X[i, j] 
        dj_db = dj_db + err #每更新完一次w(即内循环循环一次),b也相应更新一次。下一次循环则就在这次b值的基础上+err.                       
    dj_dw = dj_dw / m                                
    dj_db = dj_db / m                                
        
    return dj_db, dj_dw

#调用
#Compute and display gradient 
tmp_dj_db, tmp_dj_dw = compute_gradient(X_train, y_train, w_init, b_init)
print(f'dj_db at initial w,b: {tmp_dj_db}')
print(f'dj_dw at initial w,b: \n {tmp_dj_dw}')

最终结果为:

 2、多变量进行梯度下降

     上一步函数执行了求偏导操作,接下来要进行

则通过不断对w和b进行更新迭代,代价J也不断减小,偏导数逐渐趋于0时,最终找到 适合的参数w(多特征下,w是一个系列值)和b。差不多的模型就找到了,最终便可以使用此模型进行房价预测。

def gradient_descent(X, y, w_in, b_in, cost_function, gradient_function, alpha, num_iters): 
    """
    Performs batch gradient descent to learn theta. Updates theta by taking 
    num_iters gradient steps with learning rate alpha
    
    Args:
      X (ndarray (m,n))   : Data, m examples with n features
      y (ndarray (m,))    : target values
      w_in (ndarray (n,)) : initial model parameters  
      b_in (scalar)       : initial model parameter
      cost_function       : function to compute cost
      gradient_function   : function to compute the gradient
      alpha (float)       : Learning rate
      num_iters (int)     : number of iterations to run gradient descent
      
    Returns:
      w (ndarray (n,)) : Updated values of parameters 
      b (scalar)       : Updated value of parameter 
      """
    
    # An array to store cost J and w's at each iteration primarily for graphing later
    #一个数组,用于存储每次迭代的成本J,主要用于以后的绘图
    J_history = []
    # copy.deepcopy()函数是一个深复制函数。所谓深复制,就是从输入变量完全复刻一个相同的变量,无论怎么改变新变量,原有变量的值都不会受到影响。
    w = copy.deepcopy(w_in)  #avoid modifying global w within function 避免在函数内修改全局w
    b = b_in
    
    for i in range(num_iters):

        # Calculate the gradient and update the parameters
        # 计算梯度并使用gradient_function更新参数
        dj_db,dj_dw = gradient_function(X, y, w, b)   

        # Update Parameters using w, b, alpha and gradient
        w = w - alpha * dj_dw               ##None
        b = b - alpha * dj_db               ##None
      
        # Save cost J at each iteration
        if i<100000:      # prevent resource exhaustion 
            J_history.append( cost_function(X, y, w, b))

        # Print cost every at intervals 10 times or as many iterations if < 10
        # 每隔10次打印一次成本,如果<10次,则重复次数相同
        # math.ceil:向上取整,四舍五入。
        if i% math.ceil(num_iters / 10) == 0:
            print(f"Iteration {i:4d}: Cost {J_history[-1]:8.2f}   ")
        
    return w, b, J_history #return final w,b and J history for graphing

接下来给定初值,进行预测:

# initialize parameters
initial_w = np.zeros_like(w_init)
initial_b = 0.
# some gradient descent settings
iterations = 1000
alpha = 5.0e-7
# run gradient descent 
w_final, b_final, J_hist = gradient_descent(X_train, y_train, initial_w, initial_b,
                                                    compute_cost, compute_gradient, 
                                                    alpha, iterations)
print(f"b,w found by gradient descent: {b_final:0.2f},{w_final} ")
m,_ = X_train.shape
for i in range(m):
    print(f"prediction: {np.dot(X_train[i], w_final) + b_final:0.2f}, target value: {y_train[i]}")

    利用w_final和b_final值结合得到我们最终的预测函数计算式f_wb={np.dot(X_train[i], w_final) + b_final

得到的成果:

此时得到的模型还需优化,因为最终得到的代价函数还显示在下降,说明并不是一个最好的点。它还有下降空间!

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值