Eigen基本操作

// 矩阵 Eigen::Matrix<float,行,列> 

    // Eigen 中所有向量和矩阵都是Eigen::Matrix,它是一个模板类。它的前三个参数为:数据类型,行,列

    // 声明一个2*3的float矩阵

    Eigen::Matrix<float, 2, 3> matrix_23;//float类型

    

    //向量 Eigen::Vector3d 

    // 同时,Eigen 通过 typedef 提供了许多内置类型,不过底层仍是Eigen::Matrix

    // 例如 Vector3d 实质上是 Eigen::Matrix<double, 3, 1>,即三维向量

    Eigen::Vector3d v_3d;//double类型

	// 这是一样的

    Eigen::Matrix<float,3,1> vd_3d;//float类型



    // Matrix3d 实质上是 Eigen::Matrix<double, 3, 3>

    Eigen::Matrix3d matrix_33 = Eigen::Matrix3d::Zero(); //零矩阵

    // MatrixXd::Identity() 单位矩阵  Eigen::Matrix3d::Random(); 随机数矩阵  MatrixXd::Ones(rows,cols)     

    // 均可以 用C.setXXX 设置  C.setIdentity(rows,cols)   设置单位矩阵

    // 向量初始化  VectorXd::LinSpaced(size,low,high)  // 线性分布

    // 如果不确定矩阵大小,可以使用动态大小的矩阵  建议大矩阵使用 

    Eigen::Matrix< double, Eigen::Dynamic, Eigen::Dynamic > matrix_dynamic;

    // 更简单的

    Eigen::MatrixXd matrix_x;

    // 这种类型还有很多,我们不一一列举



    // 下面是对Eigen阵的操作

    // 输入数据(初始化)

    //  在Eigen中重载了”<<”操作符

    // 通过该操作符即可以一个一个元素的进行赋值,

    // 也可以一块一块的赋值。

    // 另外也可以使用下标进行赋值。

    //matrix_23 << 1, 2, 3, 4, 5, 6;

    matrix_23 << 2,3,4,5,6;  //注意常量矩阵的赋值

    // 正常矩阵形式输出

    cout << matrix_23 << endl;



    // 用()访问矩阵中的元素

    // 针对向量还提供”[]”操作符,注意矩阵则不可如此使用

    for (int i=0; i<2; i++) {

        for (int j=0; j<3; j++)

            cout<<matrix_23(i,j)<<"\t";//每行元素的分隔符

        cout<<endl;//换行

    }



    // 矩阵和向量相乘(实际上仍是矩阵和矩阵)

    v_3d << 3, 2, 1;//double 类型

    vd_3d << 4,5,6;//float 类型

    // 但是在Eigen里你不能混合两种不同类型的矩阵,像这样是错的

    // Eigen::Matrix<double, 2, 1> result_wrong_type = matrix_23 * v_3d;

    // 应该显式转换 matrix_23.cast<double>   float类型转换成 double类型

    Eigen::Matrix<double, 2, 1> result = matrix_23.cast<double>() * v_3d;

    cout << result << endl;

   // float类型 * float 类型

    Eigen::Matrix<float, 2, 1> result2 = matrix_23 * vd_3d;

    cout << result2 << endl;



    // 同样你不能搞错矩阵的维度

    // 试着取消下面的注释,看看Eigen会报什么错

    // Eigen::Matrix<double, 2, 3> result_wrong_dimension = matrix_23.cast<double>() * v_3d;



    // 一些矩阵运算

    // 四则运算就不演示了,直接用+-*/即可。

    matrix_33 = Eigen::Matrix3d::Random();      // 随机数矩阵

    cout << "Random :Matrix3d matrix_33 =\n" << matrix_33 << endl << endl;



    cout << "matrix_33.transpose =\n" << matrix_33.transpose() << endl;      // 转置

    cout << "matrix_33.sum=\n" <<  matrix_33.sum() << endl;            // 各元素和

    cout << "matrix_33.trace=\n" << matrix_33.trace() << endl;          // 迹

    cout << 10*matrix_33 << endl;               // 数乘

    cout << matrix_33.inverse() << endl;        // 逆

    cout << matrix_33.determinant() << endl;    // 行列式



    // 特征值

    // 实对称矩阵可以保证对角化成功

    Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> eigen_solver ( matrix_33.transpose()*matrix_33 );

    cout << "Eigen values = \n" << eigen_solver.eigenvalues() << endl;//特征值

    cout << "Eigen vectors = \n" << eigen_solver.eigenvectors() << endl;//特征向量



    // 解方程

    // 我们求解 matrix_NN * x = v_Nd 这个方程

    // N的大小在前边的宏里定义,它由随机数生成

    // 直接求逆自然是最直接的,但是求逆运算量大



    Eigen::Matrix< double, MATRIX_SIZE, MATRIX_SIZE > matrix_NN;

    matrix_NN = Eigen::MatrixXd::Random( MATRIX_SIZE, MATRIX_SIZE );//随机变量初始化

    Eigen::Matrix< double, MATRIX_SIZE,  1> v_Nd;        //列向量

    v_Nd = Eigen::MatrixXd::Random( MATRIX_SIZE,1 ); //随机变量初始化



    clock_t time_stt = clock(); // 计时

    // 直接求逆

    Eigen::Matrix<double,MATRIX_SIZE,1> x = matrix_NN.inverse()*v_Nd;

    //cout << "x = \n" << x << endl;

    cout <<"time use in normal inverse is " << 1000* (clock() - time_stt)/(double)CLOCKS_PER_SEC << "ms"<< endl;

    

	// 通常用矩阵分解来求,例如QR分解,速度会快很多

    time_stt = clock();

    x = matrix_NN.colPivHouseholderQr().solve(v_Nd);

    //cout << "x = \n" << x << endl;

    cout <<"time use in Qr decomposition is " <<1000*  (clock() - time_stt)/(double)CLOCKS_PER_SEC <<"ms" << endl;



    //矩阵分块

    Eigen::Matrix<double,5,5> Matrix_55;

    Matrix_55 = Eigen::MatrixXd::Random(5,5);

    cout<<"Random Matrix_55 :\n"<<Matrix_55<<endl;

    Eigen::Matrix3d matrixI33 = Eigen::Matrix3d::Identity();

    cout<<"Eye matrixI33 :\n"<<matrixI33<<endl;

    Matrix_55.topLeftCorner(3,3)=matrixI33;

    cout<<"Random Matrix_55 topLeft block replace by Eye matrixI33 :\n"<<Matrix_55<<endl;

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值