// 矩阵 Eigen::Matrix<float,行,列>
// Eigen 中所有向量和矩阵都是Eigen::Matrix,它是一个模板类。它的前三个参数为:数据类型,行,列
// 声明一个2*3的float矩阵
Eigen::Matrix<float, 2, 3> matrix_23;//float类型
//向量 Eigen::Vector3d
// 同时,Eigen 通过 typedef 提供了许多内置类型,不过底层仍是Eigen::Matrix
// 例如 Vector3d 实质上是 Eigen::Matrix<double, 3, 1>,即三维向量
Eigen::Vector3d v_3d;//double类型
// 这是一样的
Eigen::Matrix<float,3,1> vd_3d;//float类型
// Matrix3d 实质上是 Eigen::Matrix<double, 3, 3>
Eigen::Matrix3d matrix_33 = Eigen::Matrix3d::Zero(); //零矩阵
// MatrixXd::Identity() 单位矩阵 Eigen::Matrix3d::Random(); 随机数矩阵 MatrixXd::Ones(rows,cols)
// 均可以 用C.setXXX 设置 C.setIdentity(rows,cols) 设置单位矩阵
// 向量初始化 VectorXd::LinSpaced(size,low,high) // 线性分布
// 如果不确定矩阵大小,可以使用动态大小的矩阵 建议大矩阵使用
Eigen::Matrix< double, Eigen::Dynamic, Eigen::Dynamic > matrix_dynamic;
// 更简单的
Eigen::MatrixXd matrix_x;
// 这种类型还有很多,我们不一一列举
// 下面是对Eigen阵的操作
// 输入数据(初始化)
// 在Eigen中重载了”<<”操作符
// 通过该操作符即可以一个一个元素的进行赋值,
// 也可以一块一块的赋值。
// 另外也可以使用下标进行赋值。
//matrix_23 << 1, 2, 3, 4, 5, 6;
matrix_23 << 2,3,4,5,6; //注意常量矩阵的赋值
// 正常矩阵形式输出
cout << matrix_23 << endl;
// 用()访问矩阵中的元素
// 针对向量还提供”[]”操作符,注意矩阵则不可如此使用
for (int i=0; i<2; i++) {
for (int j=0; j<3; j++)
cout<<matrix_23(i,j)<<"\t";//每行元素的分隔符
cout<<endl;//换行
}
// 矩阵和向量相乘(实际上仍是矩阵和矩阵)
v_3d << 3, 2, 1;//double 类型
vd_3d << 4,5,6;//float 类型
// 但是在Eigen里你不能混合两种不同类型的矩阵,像这样是错的
// Eigen::Matrix<double, 2, 1> result_wrong_type = matrix_23 * v_3d;
// 应该显式转换 matrix_23.cast<double> float类型转换成 double类型
Eigen::Matrix<double, 2, 1> result = matrix_23.cast<double>() * v_3d;
cout << result << endl;
// float类型 * float 类型
Eigen::Matrix<float, 2, 1> result2 = matrix_23 * vd_3d;
cout << result2 << endl;
// 同样你不能搞错矩阵的维度
// 试着取消下面的注释,看看Eigen会报什么错
// Eigen::Matrix<double, 2, 3> result_wrong_dimension = matrix_23.cast<double>() * v_3d;
// 一些矩阵运算
// 四则运算就不演示了,直接用+-*/即可。
matrix_33 = Eigen::Matrix3d::Random(); // 随机数矩阵
cout << "Random :Matrix3d matrix_33 =\n" << matrix_33 << endl << endl;
cout << "matrix_33.transpose =\n" << matrix_33.transpose() << endl; // 转置
cout << "matrix_33.sum=\n" << matrix_33.sum() << endl; // 各元素和
cout << "matrix_33.trace=\n" << matrix_33.trace() << endl; // 迹
cout << 10*matrix_33 << endl; // 数乘
cout << matrix_33.inverse() << endl; // 逆
cout << matrix_33.determinant() << endl; // 行列式
// 特征值
// 实对称矩阵可以保证对角化成功
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> eigen_solver ( matrix_33.transpose()*matrix_33 );
cout << "Eigen values = \n" << eigen_solver.eigenvalues() << endl;//特征值
cout << "Eigen vectors = \n" << eigen_solver.eigenvectors() << endl;//特征向量
// 解方程
// 我们求解 matrix_NN * x = v_Nd 这个方程
// N的大小在前边的宏里定义,它由随机数生成
// 直接求逆自然是最直接的,但是求逆运算量大
Eigen::Matrix< double, MATRIX_SIZE, MATRIX_SIZE > matrix_NN;
matrix_NN = Eigen::MatrixXd::Random( MATRIX_SIZE, MATRIX_SIZE );//随机变量初始化
Eigen::Matrix< double, MATRIX_SIZE, 1> v_Nd; //列向量
v_Nd = Eigen::MatrixXd::Random( MATRIX_SIZE,1 ); //随机变量初始化
clock_t time_stt = clock(); // 计时
// 直接求逆
Eigen::Matrix<double,MATRIX_SIZE,1> x = matrix_NN.inverse()*v_Nd;
//cout << "x = \n" << x << endl;
cout <<"time use in normal inverse is " << 1000* (clock() - time_stt)/(double)CLOCKS_PER_SEC << "ms"<< endl;
// 通常用矩阵分解来求,例如QR分解,速度会快很多
time_stt = clock();
x = matrix_NN.colPivHouseholderQr().solve(v_Nd);
//cout << "x = \n" << x << endl;
cout <<"time use in Qr decomposition is " <<1000* (clock() - time_stt)/(double)CLOCKS_PER_SEC <<"ms" << endl;
//矩阵分块
Eigen::Matrix<double,5,5> Matrix_55;
Matrix_55 = Eigen::MatrixXd::Random(5,5);
cout<<"Random Matrix_55 :\n"<<Matrix_55<<endl;
Eigen::Matrix3d matrixI33 = Eigen::Matrix3d::Identity();
cout<<"Eye matrixI33 :\n"<<matrixI33<<endl;
Matrix_55.topLeftCorner(3,3)=matrixI33;
cout<<"Random Matrix_55 topLeft block replace by Eye matrixI33 :\n"<<Matrix_55<<endl;