RLPF:用于LLM用户摘要的预测反馈

《RLPF: Reinforcement Learning from Prediction Feedback for User Summarization with LLMs》

链接:https://arxiv.org/pdf/2409.04421

文章介绍了一种新的强化学习方法 RLPF(Reinforcement Learning from Prediction Feedback),用于优化大型语言模型(LLMs)生成的用户摘要,以提高下游任务的性能。

文章的贡献包括:

  • 引入了为用户建模和个性化系统生成自然语言用户摘要的新任务。
  • 提出了 RLPF,这是一种新颖且易于实现的训练用户摘要器的方法,无需参考摘要或手工制作提示,同时保护用户隐私。
  • 证明了 RLPF 在训练任务和未见任务上均优于基线。
  • 在内在评估中发现 RLPF 在事实性、抽象性和可读性方面有显著改进。

1. 引言

  • 大型语言模型(LLMs)在个性化预测方面展现出巨大潜力,但用户历史数据的噪声和长度给有效利用带来挑战。
  • 现有的预训练 LLMs 可能生成简洁但缺乏上下文的摘要,这限制了它们在个性化系统中的实用性。

2. RLPF 方法

  • 强化学习框架
    • 状态:用户的历史交互数据。
    • 动作:基于用户上下文生成的摘要。
    • 策略模型:将用户上下文映射到用户摘要的模型。
    • 奖励:使用预训练的 LLM 根据用户摘要进行预测,并与实际结果比较以计算奖励。
  • 奖励计算
    • 预测反馈奖励:基于 LLM 预测的未来活动与实际活动之间的匹配程度。
    • 长度奖励:鼓励生成较短的摘要,以提高效率和可读性。
  • 摘要模型:训练模型从原始活动数据生成简洁的用户摘要。
  • 基于预测的奖励模型:通过衡量生成摘要在下游预测任务中的有效性来计算奖励。
  • 反馈循环:使用奖励更新摘要模型,并通过额外奖励鼓励更短的摘要长度。

3. 实验细节

  • 在四个真实世界用户交互数据集上进行实验:MovieLens 2015 和 2003、Amazon Review 和 Google Local Review。
  • 评估指标包括预测性、事实性、抽象性和可读性。

4. 结果

  • RLPF 在下游任务性能和摘要质量方面均显著优于基线方法,最高可提升 22%。
  • RLPF 在 16 个未见任务和/或数据集上提高了性能,展示了其泛化能力。
  • RLPF 还实现了在减少上下文长度 74% 的同时提高性能。

5. 讨论

  • RLPF 展示了在增强个性化方面的潜力,但使用用户数据引发了隐私和数据泄露的担忧。

6. 相关工作

  • 文章讨论了文本摘要、用户建模和从 AI 反馈中学习的相关工作。

7. 结论

  • RLPF 是一种有效的方法,可以从原始活动数据生成简洁且易于理解的用户摘要,通过直接优化摘要生成过程来提高下游预测性能。

欢迎关注微信公众号:nlp之路,关注后发送LLM,免费领取LLM电子书

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值