LLM的上下文学习中示例样本的作用研究

《Learning vs Retrieval: The Role of In-Context Examples in Regression with LLMs》

链接:https://arxiv.org/pdf/2409.04318

文章探讨了大型语言模型(LLMs)在回归任务中是如何利用上下文示例进行学习(Learning)和知识检索(Retrieval)的,并提出了一个评估框架来分析这两种机制。

文章的贡献包括:

  1. 证明了 LLMs 可以有效从现实数据集的回归示例中学习。
  2. 提出了一个结合学习和知识检索的 ICL 机制假设。
  3. 引入了一个评估框架,允许跨不同 LLMs、数据集和提示配置系统地比较 ICL 机制。
  4. 提供了如何平衡内部知识检索和从上下文示例中学习的全面分析,并提供了提示工程工具来控制它们。

设计思路和方法论

文章的核心观点是,LLMs 在上下文学习(In-Context Learning, ICL)中的行为不是单纯的学习或检索知识,而是介于两者之间的一个谱系,这个谱系可以根据多种因素进行调整。为了验证这一观点,作者设计了一系列实验,主要关注回归任务,并使用不同的提示(prompt)配置来操纵 LLMs 依赖内部知识检索和从上下文示例中学习的程度。

实验设计

实验使用了三个主要的 LLMs:LLaMA 3 70B、GPT-3.5 和 GPT-4,并在三个回归数据集上进行测试:Admission Chance、Insurance Cost 和 Used Car Prices。这些数据集被分割为包含 100 个实例的上下文子集和包含 300 个实例的测试子集。

提示配置

作者设计了四种提示配置来与模型交互:

  1. 命名特征(Named Features):提示中包含特征的实际名称和目标变量。
  2. 匿名特征(Anonymized Features):提示中特征名称被替换为通用名称。
  3. 随机真实值(Randomized Ground Truth):提示中保持命名特征,但将真实值替换为随机生成的数字。
  4. 直接问答(Direct QA):没有上下文示例,直接询问模型估计目标变量。
评估指标

使用均方误差(MSE)作为主要的比较指标,并计算决定系数 R^2 和平均绝对误差(MAE)作为补充。

技术细节

知识检索评估(Direct QA)

首先,作者评估了 LLMs 在没有任何上下文示例的情况下,仅依赖其知识检索能力的性能。这为理解上下文示例如何调节 LLMs 的性能和 ICL 机制提供了基准。

学习和检索的相互作用

通过比较不同提示配置下的性能,作者发现:

  • 随机真实值配置:性能最差,表明 LLMs 确实从提供的示例中学习。
  • 命名特征与匿名特征配置:命名特征配置通过添加特征名称鼓励使用领域知识,通常优于匿名特征配置。
知识检索补偿 ICL 示例

当真实值被随机化时,更多的上下文示例会降低性能。这表明增加上下文示例的数量会促使模型从示例中学习,而不是仅仅检索知识。

更多特征鼓励知识检索

与上下文示例的数量不同,特征的数量被证明可以改善 LLMs 中的学习和知识检索。添加更多特征主要增强了知识检索方面,而不是对学习的贡献。

结论

文章的结论是,LLMs 在 ICL 中的行为是一个复杂的谱系,可以根据任务和数据的特性进行调整。通过精心设计的提示,可以优化 LLMs 的性能,使其在学习和知识检索之间达到最佳平衡。

欢迎关注微信公众号:nlp之路,关注后发送LLM,免费领取LLM电子书

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值