使用过的pytorch算子总结

本文总结了PyTorch中的一些重要算子,包括torch.reciprocal的倒数计算,torch.nn.Sequential快速构建神经网络的方法,Upsample的上采样操作,nn.InstanceNorm2d的归一化层,nn.ZeroPad2d的零填充功能,以及nn.ConvTranspose3d的3D转置卷积。这些算子在深度学习和神经网络中起到关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总结一些pytorch常用算子

1. torch.reciprocal(input, out=None)

说明:返回一个新张量,包含输入input张量每个元素的倒数。(单词reciprocal的意思是倒数)

参数

  • input(Tensor) – 输入张量
  • out(Tensor, 可选) – 输出张量
import torch

if __name__ == '__main__':
    a = torch.randn(5
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

落花逐流水

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值