医学图像笔记(二)nrrd数据格式

医学图像笔记(二)nrrd数据格式

1、nrrd数据格式

灵活的NRRD格式中包含了一个单个的数据头文件和既能分开又能合并的图像文件。一个NRRD数据头能够为科学可视化和医学图像处理准确地表示N维度的栅格信息。“国家医学图像计算联盟”(NA-MIC)开发了一种用NRRD格式来表示“扩散加权图像”(DWI)和“扩散张量图像”(DTI)的方法。NRRD的“扩散加权图像”和“扩散张量图像”数据可以被解读为一个“3D切片机”,能够直观地确定张量图像的方向与神经解剖的预期是一致的。 一个NRRD文件的大致格式(带有数据头)如下图所示:

深度学习下的医学图像分析(四)

2、python读取nrrd数据

需要安装pynrrd

pip install pynrrd

测试程序:

# -*- coding : UTF-8 -*-
# @file   : rd_wt_nrrd.py
# @Time   : 2021-09-14 17:01
# @Author : wmz

import numpy as np
import nrrd


if __name__ == "__main__":
    # Some sample numpy data
    filename = './img/test.nrrd'
    #
    # # Write to a NRRD file
    # nrrd.write(filename, data)

    # Read the data back from file
    readdata, header = nrrd.read(filename)
    print(readdata.shape)
    print(header)

对于图像处理处理数据本身外,还可以使用的信息包括:

数据类型type
维度信息dimension
坐标系信息left-posterior-superior
尺寸信息sizes
方向信息space directions
原点信息space origin

输出信息:

(128, 128, 256)
OrderedDict([('type', 'int'), ('dimension', 3), ('space', 'left-posterior-superior'), ('sizes', array([128, 128, 256])), ('space directions', array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]])), ('kinds', ['domain', 'domain', 'domain']), ('endian', 'little'), ('encoding', 'raw'), ('space origin', array([-154.5,  -30.5, -732. ]))])

调试信息:
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

落花逐流水

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值