Matlab计算MAE、RMSE、MSE

MAE、MSE、RMSE都是用来衡量回归模型预测能力的指标。它们都是通过计算真实值和预测值之间的差异来衡量模型的预测能力。也可以用来衡量目标值与实际值之间的误差。

mae = mean(abs(y1 - y2))
mae = mae(y1, y2)

rmse = sqrt(mean((y1 - y2).^2))

mse = mean((y1 - y2).^2)
mse = mse(y1, y2)

mae与mse是matlab自带函数。


这里引用几篇对这几种误差指标介绍的博文

评价指标 - MAE、MSE、RMSE、MRE - 知乎 (zhihu.com)

预测评价指标RMSE、MSE、MAE、MAPE、SMAPE-CSDN博客

回归评价指标:MSE、RMSE、MAE、R2、Adjusted R2_rmse和r2公式-CSDN博客

### 实现计算MAEMSERMSE和R2的MATLAB函数 为了在 MATLAB 中实现这些常用的回归性能度量标准,可以创建一个名为 `regressionMetrics` 的函数。该函数接收两个向量作为输入参数:一个是真实的观测值 (`YReal`),另一个是模型预测的结果(`YPred`)。 #### 函数定义 ```matlab function [mae, mse, rmse, r2] = regressionMetrics(YReal, YPred) % 输入: % YReal - 真实的目标变量值数组 % YPred - 预测的目标变量值数组 % 输出: % mae - 平均绝对误差(MAE) % mse - 均方误差(MSE) % rmse - 均方根误差(RMSE) % r2 - 决定系数(R-squared) % 计算各个指标 mae = mean(abs(YReal - YPred)); % MAE公式[^1] mse = mean((YReal - YPred).^2); % MSE公式 rmse = sqrt(mse); % RMSE基于MSE转换而来 ss_res = sum((YReal - YPred).^2); ss_tot = sum((YReal - mean(YReal)).^2); r2 = 1 - (ss_res/ss_tot); % R2公式 end ``` 此段代码实现了四个重要的统计学测量方法用于评估回归算法的表现: - **MAE** 表示的是所有样本点上预测值与真实值之间差距大小的一个平均数,它对于异常值相对不敏感。 - **MSE** 是指每个数据点上的预测偏差平方后的期望值;相比起MAE来说更重视较大的错误项。 - **RMSE**, 即均方根误差,是对MSE开平方得到的结果,其单位同原始数据一致,在解释上有直观意义。 - **R² Score**(决定系数),反映了自变量能多大程度解释因变量的变化情况,范围通常介于0到1之间,越接近1表示拟合越好。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值