Matlab计算MAE、RMSE、MSE

MAE、MSE、RMSE都是用来衡量回归模型预测能力的指标。它们都是通过计算真实值和预测值之间的差异来衡量模型的预测能力。也可以用来衡量目标值与实际值之间的误差。

mae = mean(abs(y1 - y2))
mae = mae(y1, y2)

rmse = sqrt(mean((y1 - y2).^2))

mse = mean((y1 - y2).^2)
mse = mse(y1, y2)

mae与mse是matlab自带函数。


这里引用几篇对这几种误差指标介绍的博文

评价指标 - MAE、MSE、RMSE、MRE - 知乎 (zhihu.com)

预测评价指标RMSE、MSE、MAE、MAPE、SMAPE-CSDN博客

回归评价指标:MSE、RMSE、MAE、R2、Adjusted R2_rmse和r2公式-CSDN博客

R2(决定系数)的范围是0到1,越接近1表示模型对数据的拟合效果越好。R2等于1表示模型完美拟合数据,R2等于0表示模型无法解释目标变量的变异性。 RMSE(均方根误差)的范围与目标变量的单位相同。它是MSE(均方误差)的平方根,用于衡量预测值与真实值之间的平均差异。RMSE越小表示模型的预测精度越高。 MAE(平均绝对误差)的范围与目标变量的单位相同。它是预测值与真实值之间绝对差的平均值,用于衡量预测值与真实值之间的平均差异。MAE越小表示模型的预测精度越高。 MBE(平均偏差误差)的范围与目标变量的单位相同。它是预测值与真实值之间的平均差异,用于衡量预测值与真实值之间的平均偏差。MBE等于0表示预测值与真实值的平均偏差为0,正值表示预测值偏高,负值表示预测值偏低。 综上所述,R2的范围是0到1,RMSEMAE和MBE的范围与目标变量的单位相同。 #### 引用[.reference_title] - *1* [回归评价指标:MSERMSEMAE、R2、Adjusted R2](https://blog.csdn.net/zhao2chen3/article/details/115345787)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [回归评价指标:MSERMSEMAE、MAPE、R2公式理解及代码实现](https://blog.csdn.net/weixin_40651515/article/details/105930868)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值