方差齐性检验

总第235篇/张俊红

1.前言

我们在方差分析里面有讲过,方差分析有一个很重要的前提就是叫方差齐性。这一篇来讲讲如何来检验方差齐性。

先讲讲什么是方差齐性,方差齐性是指不同组间的总体方差是一样的。那为什么方差分析的前提是要组间的总体方差保持一致呢?先想想方差分析是做什么呢?方差分析是用来比较多组之间均值是否存在显著差异。那如果方差不一致,也就意味着值的波动程度是不一样的,如果此时均值之间存在显著差异,不能够说明一定是不同组间处理带来的,有可能是大方差带来大的波动;如果方差一样,也就意味着值的波动程度是一样的,在相同波动程度下,直接去比较均值,如果均值之间存在显著差异,那么可以认为是不同组间处理带来的。

方差齐性检验是对两组样本的方差是否相同进行检验。检验思想与均值之间差异性检验是一样的。常用的方法有:方差比、Hartley检验、Levene检验、BF法、Bartlett检验。

2.方差比

方差比顾名思义就是两组方差的比,用较大一组的方差除较小一组的方差,最后得到一个F值,然后根据F值的大小来判断两组之间的方差是否相等。F值越大,则认为两组方差越不相等。

3.Hartley检验

Hartley检验与方差比的思想比较类似,差别在于Hartley检验用于多组方差的检验,用多组中最大的方差除最小的方差,得到一个F值,然后通过F值的判断来对方差齐性进行判断。

4.Levene检验

Levene检验是将每个值先转换为为该值与其组内均值的偏离程度,然后再用转换后的偏离程度去做方差分析,即组间方差/组内方差。

在这里关于组内均值有多种计算方式:平均数、中位数、截取平均数(去掉最大和最小值后求平均)。

在Python中有现成的函数可以使用:

from scipy.stats import levene
stat, p = levene(x, y, z)
print(stat, p)

上面公式中x、y、z代表不同组的样本。

5.BF法

Levene检验最开始计算组内均值的时候只是用了组内平均数,后来又有名叫Brown和Forsythe的两位前辈对齐进行了改造,添加了中位数和截取均值的方法,简称BF法。

这个在Python里面用的也是levene函数,通过调整参数的取值即可。

6.Bartlett检验

Bartlett检验的核心思想是通过求取不同组之间的卡方统计量,然后根据卡方统计量的值来判断组间方差是否相等。该方法极度依赖于数据是正态分布,如果数据非正态分布,则的出来的结果偏差很大。

在Python中有现成的函数可以使用:

from scipy.stats import bartlett
stat, p = bartlett(x, y, z)
print(stat, p)

上面公式中x、y、z代表不同组的样本。

7.总结

前面介绍了好几种方法,最后来总结下这几种方法的利弊及适用条件:方差比、Hartley检验、Bartlett检验都需要原始数据是正态分布,Levene检验和BF法对正态分布不是很依赖。比较常用的是Levene检验,适用于多组方差的比较,且对正态性没要求。

### SPSS中方差齐性检验的方法 在SPSS中进行方差齐性检验可以通过多种方式实现,其中最常用的是通过“Explore(探索)”模块中的Levene检验以及单因素ANOVA分析中的方差齐性检验来完成。以下是具体的操作说明: #### 使用“Explore(探索)”模块进行方差齐性检验 在SPSS的“Explore(探索)”功能中,可以利用Levene检验方差齐性进行评估。此方法适用于两组或多组数据间的比较[^1]。 - 打开SPSS并加载所需的数据集。 - 进入菜单栏,依次点击 **Analyze → Descriptive Statistics → Explore**。 - 将因变量移至“Dependent List”框中,将分组变量移至“Factor List”框中。 - 点击右上角的“Plots”按钮,在弹出窗口中勾选“Spread vs Level with Levene Test”,然后确认返回主界面。 - 最终运行分析后,输出的结果会显示Levene检验的具体数值及其显著性水平。 如果Levene检验的p值大于0.05,则认为各组间满足方差齐性的假设;反之则不满足[^2]。 #### 单因素ANOVA分析中的方差齐性检验 另一种常见的方法是在执行单因素方差分析时自动计算方差齐性检验结果。这种方法同样基于Levene检验原理。 - 同样打开SPSS软件,并导入相应的研究数据文件。 - 选择路径为 **Analyze → Compare Means → One-Way ANOVA...** - 把自变量放入“Factor”区域,而把连续型响应变量放置于“Dependent List”区域内。 - 接着按下选项键(Options),确保已激活“Homogeneity of variance test”这一项用于检测方差一致性情况后再关闭设置对话框继续下一步骤。 - 查看最终报告里的方差同质测试部分即可得知结论。 当ANOVA表下方给出的Sig.(即P-value)超过预设阈值比如0.05时表明样本总体之间不存在明显差异从而支持原假定即各个处理条件下误差平方和相等的前提条件成立。 ```python # 示例Python代码模拟调用SPSS API (仅作示意用途) import spss def run_levene_test(): """Run Levene's Test via SPSS""" spss.Submit(""" EXAMINE VARIABLES=dependent_var BY group_var /PLOT BOXPLOT STEMLEAF NPPLOT /COMPARE GROUPS /STATISTICS DESCRIPTIVES EXTREME LEVENE /CINTERVAL 95 /MISSING LISTWISE . """) run_levene_test() ``` 以上就是在SPSS里实施方差齐性检验的主要手段及相关操作指南。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

俊红的数据分析之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值