昨天讲述了研究生做的第一个项目,今天开始进入我的学术研究方向的重点——机器学习,虽然这些文章对于我找一份程序员工作可能没有什么太大的帮助,但是毕竟是之前我花了很多时间研究过的,既然以后的重点都是回忆,那就索性一个不落下吧。另外之所以开始这样的行为,也得益于之前华为的一位技术面试官对我的影响,再次感谢一下这位面试官,很遗憾的是我都不晓得他姓什么。记忆这种东西谁都会忘,大脑可以选择遗忘,这是它的自由,但是如果你放任这种自由,就是你的不对,有些时候你还得强迫它来记住一些你不能忘掉的东西。
看着之前所做的笔记,我都不敢相信这些东西居然是我一点一滴记录下来的,让我不得不感慨,人真是一个神奇的动物。今天讲述的内容来自Rashmi Kankaria的硕士论文A Tool for Constructing and Visualizing Tree Augmented Bayesian Networks,有兴趣的可以下载下来详细阅读。这篇文章主要讲述以下四个部分。
1)机器学习概述
2)贝叶斯理论
3)贝叶斯分类器
4)贝叶斯网络
1)机器学习概述
Thomas G. Dietterich认为机器学习涉及一些学习方法使得机器能够模仿人类学习的过程。由机器学习产生的程序,它能够修改自身的一些信息,通常指的是它的状态,所以对于同样的输入,会有一个不同的输出产生。这是区别于一般程序的主要区别。
机器学习涵盖的子域很多,重点研究的包括监督学习、非监督学习、神经网络、决策树和贝叶斯学习。这些内容我会在后面的内容中慢慢讲述,今天主要讲述贝叶斯。
2)贝叶斯理论
提到贝叶斯,相信工科类的学生并不陌生。贝叶斯方法源于托马斯•贝叶斯(Thomas Bayes)生前为解决一个“逆概”问题写的一篇文章,具体内容大家可以参见wiki上关于他的简介。首先来看一下大家最熟悉不过的贝叶斯定理。贝叶斯定理是一个用于计算条件概率的数学公式,其定义如下:
贝叶斯定理提供了用于计算某个hypothesis h的概率(它也称为后验概率)的方法,而这个方法基于它的先验概率p(h),给定hypothesis下观察数据的概率p(D/h)(它也称为似然概率),以及观察数据本身的概率p(D)(也称为全概率)。
也许只看公式,还不能形象的说明这个公式的用途,这里举个简单的例子。
假设医生知道患有某种咽喉癌的患者会有严重咽喉痛的概率是40%,而病人患有咽喉癌的概率是0.001%,并且任何病人患有严重咽喉痛的概率是5%。假定t表示患者患有咽喉癌,s表示患者有严重咽喉痛。则有
也就是说,患者有严重咽喉痛的情况下患有咽喉癌的概率是0.008%,即医生可以推测每12500个病人中可能会有一个患有咽喉痛的患者会有咽喉癌。即使咽喉癌与严重的咽喉痛是紧密相关的,但是患有咽喉痛的患者会患有咽喉癌的概率是非常小的。
对这个公式有一定了解后,我们在接着往下看。前面我们已经提到贝叶斯定理计算某个hypothesis的概率也称为后验概率。一般来说,我们的假定可能不止一个,我们希望知道所做的每个假定最大的可能性有多少,也就是说根据已知观察到的数据,我们希望知道某种情况发生的最大概率是多少,通俗的讲就是说最靠谱的假定是什么。由此,我们引入最大后验概率(Maximum a posterior, MAP)这个概念。
注意到,上述第三个公式,我们去掉了全概率p(D),因为对于所有的hypothesis,该值都是一样的,所以可以忽略掉。
前面我们提到概率p(D/h)为似然概率,我们引入第二个概念,也就是最大似然概率(Maximum Likelihood),它的定义为上述公式的第二个。另外如果对于任何hypothesis他的先验概率如果都等概的话,则有:
根据上述第二个公式,我们可以得到当先验假定概率p(h)为均匀分布时,最大后验概率与最大似然概率是相等的。
贝叶斯之所以为机器学习核心的方法之一,这背后的深刻原因在于,现实世界本身是不确定的,而人类的观察能力是有局限性的。我们所能做的是,如何根据已有的内容推测出最可能的正确的结论。根据贝叶斯,我们可以做两件事情:1)计算出各种不同猜测的可能性的大小;2)找到最有可能的猜测。考虑到篇幅大小,先介绍到这里,后面我在讲述后两节的内容。
不可小视的贝叶斯(一)
最新推荐文章于 2022-04-09 21:45:18 发布