机器学习-SVM

  1. 线性感知机分类

  2. 支持向量机

线性感知机(Perceptron)

感知机是线性二值分类器。

注意:什么是线性?线性分割面就是,就是在分割面中,任意两个的连线也在分割面中,这个分割面,就是线性分割面。

f(x,w,b)=sign(wx+b)

wx+b>0, f=1

wx+b<0, f=-1

为什么分割面能写成 wx+b=0?w 一个向量。

对于普通的方程 y=kx+b,那么我们可以写成 kx-y+b=0,写成向量方程就是:

当k=1时,w(1,-1) 如下图知,w 是分割面的法向量。 

感知机--目标函数

最小化错误率:

I 函数是:当预测值 f() 与实际值 y 不相等时,I=1,相等是 I=0 。所以求和为错误的样本数。

我们可以转换成后边的函数,sign 函数是:wx+b>0 是 函数值为1,wx+b<=0 时函数值为-1.

那么如果分对:sign 与 y 符号相同,相减为 0,如果分错,sign 与 y 符号相反,那么相减为2 或者 -2 所以需要除以2,就是分错样本数了。

由于sign() 函数不是处处可导,给算法设计带来困难。所以我们换一个容易的策略。

                   函数 ①

这个函数只统计分错样本,所以如果全分对L=0,如果有分错样本时L>0  (<0,所以函数前边有个负号)

 结论:线性可分时,最小化 L 等价于最小化错误率。

注意:如果不是线性不可分时,这个结论不成立。

如:w1xi+b=0.2    分错

      w1xj+b=0.3    分错   L1=0.5

  

      w2xk+b=0.6     分错: L2=0.6

当为 w1 是有两个 样本点分错了错误率为2,L1=0.5 ,但是当为 w2 时 有一个样本点分错了错误率为1, L2=0.6>L1 

现在我们要 最小化 函数 ①,那么我对函数① 分别对w 和 b 求偏导。(-xiyi,-yi)

我们用梯度下降法来找函数① 的极值。

w = w + p*y_i*x_i

b = b + p*y_i

 是学习率。

算法步骤:

  1. 随机设定:w ,b 的值

  2. 用当前(w,b)轮流对所有的样本点分类,如果分错,更新(w,b) 的,继续。

  3. 重复步骤2直到所有的点都被分对

感知机的不足:

  1. 有无穷多个可行解

  2. 由于感知机是贪婪算法,所以结果依赖初始值和误分点的顺序。

  3. 线性限制(对于线性不可分的特征空间,线性感知机无能为力)

  

          不足 1                        不足 3

线性感知机有这些不足,接下来我们看看在支持向量中是怎么弥补的。

支持向量机(Support Vector Machine)

  1. 线性可分:硬间隔SVM

  2. 适用于线性不可分:软间隔SVM

  3. SVM对偶问题和解的性质

  4. 非线性:Kernel SVM

硬间隔 SVM

                                    

                    图 1                                                                                               图 2                                                                      图 3

看图1,这里有两个分割线,到底哪个好呢?对于新数据(哪个方框)到底应该属于哪一类呢?我看到超平面不同,对新数据的影响不同。

看图2,间隔:分界面到最近样本距离(的两倍)。

          我们认为使间隔最大的分界面是最好的分界面,因为间隔最大,将来落在间隔内的新数据更够跟准确的分到所属的类中。

          最大间隔分类器是使得间隔宽度最大的线性分类器。

看图3  要求:对正样本wx+b>=1

                    对负样本wx+b<=-1

原因:由于wx+b>0  那么肯定存在一个非常接近0的ε 使 wx+b>=ε ,两边同时除以 ε 得 wx/ε+b/ε>=1,那么我将w/ε=w,b/ε=b(先的未知数),于是就有wx+b>=1,同理wx+b<=-1

求间隔(margin):

M 由向量投影公式:投影=向量与投影方向单位向量的内积。

(第二个式子是根据直角三角形计算出来的)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         将conθ 带入二式就得到了M的值。

wx+b>=1 , y=1  

wx+b<=1 , y=-1 所以:y(wx+b)>=1 

我们要最大 ,就等价于最小化,因为:,而 是一个单调递增函数,最小化的也就是最小化 x ,同理最小化化,优化问题,前边加一个1/2 系数,对优化问题没有影响,添加一个1/2 系数是为了对二次求导有一个2系数相消。

     这样就转化为一个关于 w 和 b 的二次规划问题:

          

软间隔 SVM

     感知机是有无穷多个可行解,现在硬间隔SVM 通过最大间隔,有唯一解。那么目前还有什么缺点?对噪音的处理。现在都是要求线性可分,如果存在噪音,那么将会出现震荡。那么我们接下来,看看软间隔SVM是怎么解决噪音问题的。

 如果存在噪音点。

     软间隔SVM 通过引入松弛变量ξi,使得错分样本得到惩罚(注意:当还没有找到最优解时,一些非噪音点也会遭到惩罚)。

     最小化松弛项,同时最大化间隔。

     minimize 错分样本对应的 ξi>=1,所以:Σiξi>=错误样本个数。

硬间隔 VS 软间隔

  

                         硬间隔SVM                                                                                软间隔SVM

拉格朗日函数

为什么要引入拉格朗日函数呢?对于一般函数我们要极值,我们只需求导等于零即可。那么对于带约束的函数求导,我们怎么求他的极值。我们用拉格朗日乘子,将目标函数和约束函数写到一个新函数中,对这个新函数我们求导等于零即可。

优化问题

 对每个约束引入拉格朗日乘子 ai,ui 得到:

 且 a>=0,u>=0

这个拉个朗函数,根据 α和u 求最大,然后根据:w,b, ξ 求最小。

那么经这转换,最后求出解还是原问题的解吗?

分析:内部最大化:当不成立,也就是小于 0 ,根据式子值,α的系数是正数 且 α>=0,那么这时根据 α 求拉格朗日函数的最大值为正无穷。

                              同理当不成立时, 且 u>=0 ,拉格朗日函数最大值为正无穷。

                              当成立时,,α的系数是负数,且α>=0 ,所以只有 α=0 时,拉个朗日函数的最大值为0.

                              当成立时, ,u 的系数是负数,且u>=0 ,所以只有 u=0 时,拉个朗日函数的最大值为0.

结论:     当 成立时,拉格朗日函数 根据 a,u求得最大值为0,则此在根据w,b,ξ 求最小值,就是原函数的最小值

               当 不成立时,,拉格朗日函数 根据 a,u求得最大值为正无穷,则此在根据w,b,ξ 求最小值,没有意义。

     

          图1                                        图2

原问题就像图1

朗格朗日函数就像图2

拉个朗日的对偶问题:

 且ai>=0,ui>=0

对偶函数只是将最大化和最小化交换了一下位置。那么优化对偶函数的解和拉格朗日函数的解是一致的吗?

凸优化是一样的。因为凸规划满足KKD条件。凸规划问题就是:约束是凸集,目标函数是凸函数。

求极值问题,L对 w,b,ξ 求导等于零。

式(1)得到:,带入L:

需满足式2,3和对偶条件:

  1. ai>=0

  2. ui>=0

  3. C-ai-ui=0

  4. Σyiai=0

使用ui=C-ai  消掉ui,得到最终的对偶问题:

由于, 预测函数变为:

求b:满足 0<ai<C 的i 对应的支持向量,解yif(xi)=1得到b

对偶问题有点,只需内积,不需 x 具体值。这样也就可以用核函数了。

KKT 条件

最优化问题,最后变成求KKT条件。只要满足KKT 条件的解,就是原问题的最优解。

非线性SVM

对于线性可分数据,线性SVM表现很好了。

如果训练数据本身存在复杂非线性关系(在给定的特征空间中),很难用线性模型较好的处理。

解决办法:通过一个函数,将原来的特征空间中的样本,映射到高维的特征空间中:

 将原来的数据的平方作为第二维。

原始空间中任意形状的两个区域,总是可以在某些高维特征空间中映射成线性可分的区域。

将到原点的距离最为第四维的数据。

核函数:

之前我们讲过,SVM分类器的训练和预测都仅依赖于样本对的内积值 K(xi,xj)=xi^Txj

核函数对应某个特征空间中的内积。

核函数例子:

  1. 线性:(这就是内积定义,就是映射的还是原来的空间)

  2. p次多项式:

  3. 高斯核(RBF核)(特征空间是无限维空间,此核可以用来逼近任意复杂的分类面)(σ 参数需要自己调)

  4. Sigmoir:

注意:引入Kernel 的同时带来高计算复杂度:

  1. Kernel SVM 中,支持向量个数随样本数增多。

  2. Kernel SVM 问题求解至少是n^2 复杂度。(因为我们需要计算每个特性向量与其他特征向量的内积)

最著名的两个工具包

LIBSVM:

     http://www.csie.ntu.edu.tw/~cjlin/libsvm/

SVM Light:

     http://www.cs.cornell.edu/People/tj/svm_light/

liblinear-1.93:这个是针对线性可分的数据,做了很多优化,比libsvm-3.17 快很多。

### 回答1: WOA-SVM(Walking Optimization Algorithm-Support Vector Machine)是一种机器学习算法,它可以用来构建分类和回归模型,以支持向量机SVM)的形式。它是基于一种叫做行走优化算法(WOA)的迭代算法,通过改进SVM的参数来改进模型的性能。 ### 回答2: WOA-SVM其实是一种基于鲸鱼群算法(WOA)和支持向量机(SVM)的机器学习算法。这个算法结合了两种优秀的算法,可以在处理分类问题时具有较高的性能。 WOA是一种仿生智能算法,灵感来源于鲸鱼的捕食行为。这种算法通过模拟鲸鱼在捕食中的行为,来搜索解空间中的最优解。WOA根据每个个体的适应度值和搜索概率来更新每个解。在每次迭代中,较好的解会被选择,且搜索空间也会收缩,最终找到全局最优解。 SVM是一种非常强大的分类器,主要用于二分类问题。它的目标是找到一个最优超平面,可以将不同类别的数据点最大程度地分开。SVM通过在特征空间中构造一个决策边界,将不同类别的数据点分隔开。 WOA-SVM算法结合了WOA和SVM的优点,能够更好地处理分类问题。该算法的代码实现大致可以分为以下几个步骤: 1. 数据准备:将需要分类的数据集划分为训练集和测试集。 2. 初始化WOA参数:设定WOA算法的迭代次数、种群大小等参数。 3. WOA算法:根据初始化的参数,采用WOA算法进行迭代搜索,逐步优化SVM模型。 4. 构建SVM模型:根据当前的WOA参数,构建SVM模型,根据训练集进行模型训练。 5. 模型评估:使用测试集评估模型的性能,例如计算分类准确率、精确率、召回率等指标。 6. 结果分析:根据评估结果,分析模型的性能,进一步调整WOA参数,以得到更好的分类效果。 总体来说,WOA-SVM算法通过融合WOA和SVM,既能够利用WOA算法的搜索能力,又能够充分发挥SVM的分类性能。这种算法在处理分类问题时具有很好的潜力,并且可以根据实际问题进行调整,以达到更好的结果。 ### 回答3: WOA-SVM(Whale Optimization Algorithm-Support Vector Machine)是一种结合鲸鱼优化算法(Whale Optimization Algorithm)和支持向量机(Support Vector Machine)的机器学习算法。该算法在解决分类和回归问题方面具有很高的效果。 首先,WOA-SVM算法通过鲸鱼优化算法来寻找最优解。鲸鱼优化算法中的鲸鱼代表解空间中的候选解,而位置和尺寸表示解的质量。算法通过模拟鲸鱼的迁徙、寻找食物和社交行为等行为规律,来搜索解空间中的最优解。 在WOA-SVM算法中,通过将支持向量机引入到鲸鱼优化算法中,将鲸鱼与支持向量机的分类功能相结合。支持向量机是一种监督学习算法,通过构建一个超平面来进行分类。该算法通过将数据映射到高维空间,并在其中寻找最优的超平面,来实现数据的分类。 最后,WOA-SVM算法通过结合鲸鱼优化算法支持向量机,对数据进行分类和回归分析。该算法的优势在于能够充分利用鲸鱼优化算法的搜索能力和支持向量机的分类准确性,在解决复杂问题时具有很高的效果。 总之,WOA-SVM机器学习算法是一种结合鲸鱼优化算法支持向量机算法,通过利用鲸鱼优化算法的搜索能力和支持向量机的分类准确性,对数据进行分类和回归分析。这种算法在解决分类和回归问题方面具有很高的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值