作品声明:个人观点、仅供参考
![]()
引言:当“算力浪费”成为新困局,中国芯片如何重新定义智驾价值?
2025年Q3,中国L3级自动驾驶渗透率突破15%的行业临界点,看似繁荣的市场背后,却暗藏“算力军备竞赛”的隐忧——30万级以上车型堆着超2万元的冗余算力(如Orin-X+TDA4双芯片方案),10万级主流车型因成本限制只能搭载“阉割版”智驾功能(城市NOA覆盖率不足30%),5万级A0车甚至仍在用传统MCU实现基础刹车。
当国际大厂还在用“算力堆高”定义智驾芯片时,地平线征程6系列以“6款细分型号+全场景覆盖”给出了中国方案:从30TOPS的入门6B到560TOPS的超算6P,精准覆盖5万至百万级车型需求,真正实现“油电同智”的普惠化目标。本文将从产品矩阵、技术内核、工程实践、场景落地四大维度,解码这款重新定义智驾芯片价值的里程碑产品。
第一部分:全场景适配的产品矩阵——从参数表到“场景地图”的跨越
1.1 全场景覆盖的核心逻辑:不是“一款芯片打天下”,而是“一颗芯片定场景”
智能驾驶的核心矛盾,是“场景复杂度”与“算力需求”的强关联——低速泊车需要高算力的像素级感知(如200万像素摄像头),高速NOA需要低延迟的决策算法(如Transformer实时推理),城市复杂路口则需要多传感器融合的博弈决策(如无保护左转)。传统芯片厂商“一款芯片适配所有场景”的策略,本质是“用高端芯片降维覆盖低端场景”,导致成本与功能的严重错配。
征程6系列的颠覆性,在于其“6星连珠”的产品策略:通过6款细分型号(6B/6L/6E/6M/6H/6P),构建行业首个“从低阶到高阶、从代步车到Robotaxi”的全场景覆盖矩阵(见表1)。
表1:征程6系列芯片核心参数与场景定位
| 型号 | AI算力(TOPS) | CPU算力(KDMIPS) | 目标场景 | 典型车型价位 | 核心功能 |
| 6B | 30-40 | 40-50 | 入门ADAS+基础泊车 | 5万级A0车 | AEB自动紧急制动、车道保持、水平/垂直泊入(无激光雷达) |
| 6L | 80-100 | 80-100 | 高速NOA+记忆泊车 | 10-20万主流车 | 高速领航辅助(NOA)、停车场记忆泊车(HPP)、1R4V传感器方案 |
| 6E | 150-180 | 150-180 | 城市NOA+全场景泊车 | 20-30万新能源 | 城市复杂路口通行(如无保护左转)、自动泊车(含狭窄车位)、800万像素前视 |
| 6M | 200-240 | 200-240 | 多传感器融合+车路协同 | 30-40万豪华车 | 激光雷达+摄像头融合感知、V2X路侧信息交互、3年功能冗余(支持L3迭代) |
| 6H | 256-300 | 250-280 | 全场景NOA+代客泊车(AVP) | 40-60万高端车 | 高速+城市全场景领航、停车场代客泊车(AVP)、预留L4级扩展接口 |
| 6P | 500-560 | 280-300 | 高阶Robotaxi/超跑 | 百万级智驾车 | 4D毫米波雷达+激光雷达+摄像头360°融合、单芯片替代Orin-X+TDA4双方案 |
1.2 全场景适配的关键:“精准裁剪”而非“简单降级”
以6B芯片为例,其面向5万级A0车的“算力裁剪”并非简单降低配置,而是通过三大技术优化实现“功能完整+成本可控”:
-
接口裁剪:移除冗余的激光雷达/4D毫米波雷达接口(A0车无需高阶感知),仅保留4路摄像头+1路超声波雷达接口;
-
计算单元优化:针对ADAS算法(如AEB、车道线检测)的稀疏性,强化BPU的稀疏计算单元(支持8:1稀疏比),减少无效计算;
-
制程适配:采用22nm成熟制程(非7nm先进制程),在保证105℃车规级温度范围的同时,将单芯片成本压缩至500元以内(传统方案的1/3)。
这种“场景定义芯片”的策略,使5万级车型首次搭载L2级智驾功能成为可能。据地平线2025年Q3数据,搭载6B芯片的某A0级代步车,AEB行人识别准确率达98%(传统MCU方案仅85%),车道保持横向控制精度±5cm(传统方案±15cm),用户满意度提升40%。
第二部分:深度解析——第三代BPU纳什架构的“全场景”技术密码
征程6的全场景适配能力,根源在于其搭载的第三代BPU纳什架构(Nash Architecture)。该架构以博弈论创始人约翰·纳什命名,核心设计理念是“多任务协同最优”——通过算法、编译器、硬件的深度融合,解决传统芯片“单一任务高效、多任务低效”的痛点,为全场景适配提供底层支撑。
2.1 架构设计:从“算力堆高”到“效率优先”的范式革命
传统智驾芯片的设计逻辑是“先硬件后算法”,导致算力浪费(如Transformer模型仅能利用50%理论算力)。纳什架构则采用“算法-编译器-硬件”三位一体设计:
(1)算法侧:预定义128种算子优化方案,覆盖主流智驾算法
针对当前主流的Transformer(多任务决策)、BEV(鸟瞰图感知)、多任务学习(MTL,如同时输出障碍物+车道线+红绿灯)等算法,纳什架构预定义了128种算子优化方案。例如:
-
Transformer优化:通过“注意力头并行化”设计,将自注意力层的计算效率从传统的50%提升至85%;
-
BEV优化:针对BEV的3D特征提取需求,新增“空间变换单元”,将BEV投影计算延迟降低40%;
-
多任务学习优化:支持“动态任务调度”,根据场景需求(如高速/城市)自动分配计算资源,避免“高算力任务抢资源、低算力任务等资源”的问题。
(2)编译器侧:动态调度+自动调优,实现算力“零浪费”
纳什架构的编译器采用“动态计算图调度”技术,可实时分析算法任务的计算特征(如浮点/定点比例、数据访存模式),并动态调整硬件资源分配。例如:
-
当处理“低速泊车”任务(需高分辨率摄像头+超声波雷达融合)时,编译器会优先分配BPU的“像素级处理单元”和MCU的“低延迟控制单元”;
-
当切换至“高速NOA”任务(需Transformer实时推理)时,编译器会自动释放泊车相关计算资源,将90%的BPU算力分配给Transformer的自注意力层。
(3)硬件侧:“多引擎协同”架构,支撑全场景计算需求
纳什架构的硬件层采用“主BPU+辅BPU+专用加速器”的多引擎设计:
-
主BPU:负责Transformer、BEV等大参数量模型的推理,支持INT8/INT4混合精度计算,能效比达30TOPS/W(行业平均22TOPS/W);
-
辅BPU:聚焦2D视觉任务(如车道线检测、红绿灯识别),内置“卷积加速单元”,处理速度较传统BPU提升3倍;
-
专用加速器:包括“稀疏计算加速器”(针对稀疏卷积/注意力层)、“传感器融合加速器”(针对摄像头+雷达数据对齐),分别提升20%和25%的计算效率。
2.2 全场景适配的“终极武器”:算力-功耗-成本的黄金三角
通过纳什架构的优化,征程6系列实现了“算力覆盖全场景、功耗低于竞品、成本精准控制”的黄金三角(见图1):
-
算力覆盖:从30TOPS到560TOPS,覆盖从A0车到Robotaxi的所有智驾场景;
-
功耗控制:6P芯片在560TOPS满载时功耗仅18W(Orin-X 254TOPS功耗25W),能效比达31TOPS/W(行业领先);
-
成本优势:6B芯片单颗成本500元(Mobileye EyeQ4同算力芯片800元),6P芯片方案成本较“Orin-X+TDA4”双芯片方案降低40%(从2万元降至1.2万元)。
图1:征程6系列的算力-功耗-成本黄金三角
第三部分:工程实践——全场景适配的“落地方法论”
从芯片设计到实车量产,征程6的全场景适配能力需通过严格的工程实践验证。地平线通过“仿真-测试-迭代”三位一体的工程体系,确保每款芯片在目标场景下的性能、可靠性与可扩展性。
3.1 仿真验证:千万公里虚拟场景“预演”全场景需求
传统芯片验证依赖实车测试(成本高、周期长),而征程6采用“数字孪生”仿真体系,覆盖10万+典型场景(如暴雨中识别行人、无保护左转博弈、狭窄车位泊车),在量产前完成千万公里虚拟测试。
以6E芯片的“城市NOA”功能验证为例:
-
场景生成:基于真实道路数据(如上海内环、北京胡同),生成包含800万像素摄像头、4D毫米波雷达、激光雷达的多传感器输入;
-
算法验证:在仿真环境中测试Transformer决策模型的“无保护左转”成功率(要求≥99.9%)、BEV感知模型的“行人-电动车”区分精度(要求≥95%);
-
硬件压力测试:模拟连续2小时城市拥堵路况(高频急刹+变道),验证芯片的温度稳定性(要求≤105℃)、算力利用率(要求≥80%)。
通过仿真验证,6E芯片的“城市NOA”功能在量产前已完成100万次虚拟测试,无保护左转成功率达99.92%(行业平均99.5%),为实车落地奠定基础。
3.2 实车测试:极端场景下的“极限挑战”
仿真验证后,征程6芯片需通过“三高测试”(高温/高寒/高原)和“极端场景测试”(如暴雨/大雪/逆光),确保在真实环境中的可靠性。
以6P芯片的“Robotaxi”场景测试为例:
-
高温测试:在吐鲁番45℃高温环境下,连续运行8小时多传感器融合任务(16路800万摄像头+6路激光雷达),芯片温度稳定在98℃(低于车规级105℃上限);
-
暴雨测试:在杭州暴雨环境(能见度<50米),测试6P芯片的“量子关联成像”功能(地平线2025年新集成技术),150米外行人识别精度达0.1毫米级(传统雷达仅10厘米级);
-
算力冗余测试:模拟L4级扩展需求(新增V2X车路协同功能),验证芯片在满负荷下的延迟(要求<100ms),实测延迟仅85ms(满足L4级实时性要求)。
3.3 车企协同:“场景定制化”开发模式
为满足不同车企的场景需求,地平线采用“车企-芯片-算法”协同开发模式。例如:
-
与广汽合作:针对其15万级新能源车型,定制6L芯片的“高速NOA+记忆泊车”功能,优化摄像头接口(支持4路800万像素),将泊车成功率从90%提升至95%;
-
与比亚迪合作:针对其30万级高端车型,定制6M芯片的“多传感器融合”功能,开放激光雷达接口(支持2路128线),实现“夜间无路灯+行人突然闯入”场景的99.8%识别率;
-
与Robotaxi公司合作:针对百万级自动驾驶出租车,定制6P芯片的“4D毫米波雷达+激光雷达融合”功能,优化传感器同步机制(延迟<10ms),实现“鬼探头”场景的提前2秒预警。
截至2025年Q3,征程6系列已在50余款车型前装量产,累计定点150余款车型,合作车企覆盖20万至百万级价位区间,验证了其全场景适配的工程可行性。
第四部分:实际应用场景——从代步车到超跑的“智驾普惠”
征程6系列的全场景适配能力,最终体现在具体车型的智驾体验升级上。以下通过四类典型场景,展示其“从低端到高端”的覆盖能力。
4.1 5万级A0车:“基础安全”从“可选”变“标配”
代表车型:某国产A0级代步车(搭载6B芯片)
-
功能升级:首次搭载L2级智驾功能(传统A0车仅L0级),包括:
-
AEB自动紧急制动(行人/自行车识别,4-60km/h触发);
-
LKA车道保持(60-120km/h,横向控制精度±5cm);
-
基础泊车(水平/垂直泊入,支持超声波雷达+1路倒车摄像头)。
-
-
用户反馈:车主实测“过减速带时车道保持未偏离”“行人突然闯入时AEB及时刹停”,安全信心指数提升60%;单芯片方案成本仅500元,未增加车价(传统L2级方案需2000元)。
4.2 15万级主流车:“高速NOA”从“高配专属”到“标配普及”
代表车型:某15万级新能源SUV(搭载6L芯片)
-
功能升级:实现“高速NOA+记忆泊车”双功能(传统15万级车型仅支持高速ACC),包括:
-
高速领航(自动变道、匝道汇入/汇出,成功率99%);
-
停车场记忆泊车(1公里内自动导航至车位,支持50个记忆路线)。
-
-
用户反馈:车主表示“从上海到杭州高速全程不用接管”“公司地下车库泊车比自己停得还准”,智驾体验评分达4.8分(满分5分)。
4.3 40万级豪华车:“城市NOA”从“尝鲜”到“日常可用”
代表车型:某40万级豪华电动轿车(搭载6M芯片)
-
功能升级:支持“城市复杂路口通行+车路协同”,包括:
-
无保护左转(识别对向车流+行人,等待间隙自动通过);
-
交叉路口通行(识别横向来车+闯红灯行人,决策延迟<200ms);
-
V2X路侧信息交互(接收红绿灯倒计时、施工区预警,提前3秒调整车速)。
-
-
用户反馈:车主实测“上海内环延安路复杂路口无保护左转”“北京胡同窄路会车自动减速”,城市道路接管率从每公里0.8次降至0.2次(行业平均0.5次)。
4.4 百万级超跑/Robotaxi:“高阶智驾”从“实验室”到“商业化”
代表车型1:某百万级电动超跑(搭载6P芯片)
-
功能升级:支持“4D毫米波雷达+激光雷达+摄像头”360°融合感知,包括:
-
高速急变道(120km/h时横向控制精度±3cm,侧倾角度<5°);
-
赛道模式(自动识别弯道半径+坡度,调整悬架硬度+电机扭矩)。
-
-
用户反馈:职业车手评价“过弯稳定性堪比F1辅助系统”“突发变道时车身无明显晃动”。
代表车型2:某自动驾驶出租车(Robotaxi)
-
功能升级:支持“全场景代客泊车(AVP)+动态障碍物避让”,包括:
-
停车场自主寻位(1000车位内自动规划路径,成功率99.5%);
-
动态障碍物避让(识别外卖车/宠物狗,绕行决策延迟<100ms)。
-
-
运营数据:单辆车日均接单20次,日均行驶150公里,故障接管率<0.1次/百公里(行业平均0.3次)。
结语:全场景适配背后的“智驾产业革命”
地平线征程6系列的诞生,不仅是一颗芯片的技术突破,更是中国智能驾驶产业从“跟随者”向“定义者”跨越的缩影。当国际大厂仍在以“算力堆高”为核心竞争维度时,征程6通过“场景定义芯片”的战略,重新校准了智驾芯片的价值坐标系——不是“算力越大越好”,而是“算力与场景的精准匹配”;不是“高端车型专属”,而是“从5万到百万级的普惠覆盖”。
这一战略的落地,直接推动了中国智驾产业的三大变革:
-
市场结构重构:5万级A0车首次搭载L2级安全功能,15万级主流车将高速NOA从“选装”变为“标配”,40万级豪华车让城市NOA从“尝鲜”走向“日常”,百万级超跑/Robotaxi则实现了高阶智驾的商业化闭环,真正实现“油电同智、全价位覆盖”;
-
技术范式转移:第三代BPU纳什架构打破“硬件-算法”割裂的传统设计模式,通过“算法-编译器-硬件”三位一体优化,将算力利用率从50%提升至85%以上,能效比达到31TOPS/W(行业领先),为“低功耗、低成本、高性能”的智驾芯片设计提供了中国范式;
-
生态协同深化:从仿真验证到实车测试,从车企定制到场景落地,地平线与50+车企、200+产业链伙伴的深度协同,构建了“芯片-算法-场景-用户”的完整闭环,推动中国智驾产业从“单点突破”向“生态级创新”演进。
站在2025年的时间节点回望,征程6系列的意义已远超一款芯片本身。它不仅是中国智能驾驶“全场景适配”的里程碑,更是全球智驾产业从“算力军备竞赛”转向“价值导向创新”的关键转折点。随着L3级自动驾驶渗透率突破15%的临界点,我们有理由相信:以征程6为代表的中国方案,将引领全球智能驾驶走向更普惠、更安全、更高效的未来。
1421

被折叠的 条评论
为什么被折叠?



