hugging face inference API返回内容太短的问题

hugging face的inference api返回的内容默认很短,可以通过参数max_new_tokens进行设置:

Detailed parameters

When sending your request, you should send a JSON encoded payload. Here are all the options

All parameters
inputs (required):a string to be generated from
parametersdict containing the following keys:
top_k(Default: None). Integer to define the top tokens considered within the sample operation to create new text.
top_p(Default: None). Float to define the tokens that are within the sample operation of text generation. Add tokens in the sample for more probable to least probable until the sum of the probabilities is greater than top_p.
temperature(Default: 1.0). Float (0.0-100.0). The temperature of the sampling operation. 1 means regular sampling, 0 means always take the highest score, 100.0 is getting closer to uniform probability.
repetition_penalty(Default: None). Float (0.0-100.0). The more a token is used within generation the more it is penalized to not be picked in successive generation passes.
max_new_tokens(Default: None). Int (0-250). The amount of new tokens to be generated, this does not include the input length it is a estimate of the size of generated text you want. Each new tokens slows down the request, so look for balance between response times and length of text generated.
max_time(Default: None). Float (0-120.0). The amount of time in seconds that the query should take maximum. Network can cause some overhead so it will be a soft limit. Use that in combination with max_new_tokens for best results.
return_full_text(Default: True). Bool. If set to False, the return results will not contain the original query making it easier for prompting.
num_return_sequences(Default: 1). Integer. The number of proposition you want to be returned.
do_sample(Optional: True). Bool. Whether or not to use sampling, use greedy decoding otherwise.
optionsa dict containing the following keys:
use_cache(Default: true). Boolean. There is a cache layer on the inference API to speedup requests we have already seen. Most models can use those results as is as models are deterministic (meaning the results will be the same anyway). However if you use a non deterministic model, you can set this parameter to prevent the caching mechanism from being used resulting in a real new query.
wait_for_model(Default: false) Boolean. If the model is not ready, wait for it instead of receiving 503. It limits the number of requests required to get your inference done. It is advised to only set this flag to true after receiving a 503 error as it will limit hanging in your application to known places.

python示例:

import requests

API_URL = "https://api-inference.huggingface.co/models/xxxxxxxxx"
headers = {"Authorization": "Bearer xxxxxxxxxxx"}

def query(payload):
        response = requests.post(API_URL, headers=headers, json=payload)
        return response.json()

output = query({
    "inputs": "please write a LRU cache in C++ ",
    "parameters": {"max_new_tokens": 250},
})

print(output)

<think>嗯,用户现在问的是Hugging FaceInference API,之前已经问过如何在Vue中使用Hugging Face,所以这次需要更详细地介绍Inference API本身。首先,我需要确认用户可能的背景。他们可能是一个前端开发者,尤其是使用Vue.js的,想要集成机器学习模型到他们的应用中。之前的问题涉及到了两种方法:API调用和Transformers.js,现在用户想深入了解API部分。 用户的需求可能包括了解Inference API的基本概念、如何申请和使用API、具体的代码示例,以及最佳实践。考虑到之前的回答已经给出了一些Vue组件的示例,这次需要更全面地覆盖Inference API的功能、支持的模型类型、认证方式、请求参数和响应结构,以及错误处理和费用问题。 我需要确保回答的结构清晰,分点说明,比如核心概念、使用步骤、代码示例、应用场景、注意事项等。同时,用户可能关心安全性,比如如何保护API密钥,所以需要提到环境变量和后端代理的建议。此外,用户可能对费用和速率限制有疑问,所以需要解释定价模型和如何管理配额。 可能还需要对比Inference API与其他方法(如本地部署或使用Transformers.js)的优缺点,帮助用户决定是否适合他们的项目。例如,API适合快速集成和复杂模型,但需要考虑网络延迟和成本;而浏览器端适合轻量级模型和隐私需求。 需要检查是否有遗漏的关键点,比如支持的模型列表、如何选择模型、如何处理不同的任务类型(如文本生成、分类、图像处理等)。同时,提供具体的curl和JavaScript示例,以及Vue中的实现,可以增加实用性。 最后,确保语言简洁明了,避免技术术语过多,但又要足够详细以满足开发者的需求。可能还需要提醒用户注意模型的输入输出格式,以及如何处理可能的错误响应,比如模型加载时间或无效的token。</think>以下是Hugging Face Inference API的详细介绍和使用指南: --- ### **一、核心概念** Hugging Face Inference API 是托管在云端的机器学习模型调用接口,支持**20万+个预训练模型**(涵盖NLP、CV、语音等领域),主要特点: 1. **免部署**:直接通过REST API调用模型 2. **按需付费**:按请求次数计费(免费版每月3,000次) 3. **自动扩展**:自动处理模型加载和计算资源分配 --- ### **二、使用流程** #### **1. 获取API密钥** - 登录Hugging Face官网 → Settings → Access Tokens - 创建`API_TOKEN`(需勾选`Read`权限) #### **2. 选择模型** 访问[Hugging Face模型库](https://huggingface.co/models),筛选支持Inference API的模型(带`Deploy`按钮的模型) #### **3. API基础请求格式** ```bash curl https://api-inference.huggingface.co/models/{MODEL_ID} \ -X POST \ -H "Authorization: Bearer {API_TOKEN}" \ -H "Content-Type: application/json" \ -d '{"inputs": "YOUR_INPUT_DATA"}' ``` --- ### **三、主要功能示例** #### **1. 文本分类** ```javascript // Vue中使用示例 async function classifyText(text) { const response = await axios.post( 'https://api-inference.huggingface.co/models/distilbert-base-uncased-finetuned-sst-2-english', { inputs: text }, { headers: { Authorization: `Bearer ${API_TOKEN}` } } ); return response.data[0][0].label; // 返回分类标签 } ``` #### **2. 文本生成** ```javascript // 使用GPT-2生成文本 const payload = { inputs: "人工智能的未来是", parameters: { max_new_tokens: 50, temperature: 0.7 } }; ``` #### **3. 图像处理** ```javascript // 图像分类(需Base64编码图片) const payload = { inputs: "..." }; ``` --- ### **四、关键参数配置** | 参数 | 类型 | 说明 | 示例 | |------|------|------|------| | `wait_for_model` | bool | 等待模型加载(默认false) | `true` | | `use_cache` | bool | 使用缓存结果(默认true) | `false` | | `min_length` | int | 生成文本最小长度 | `50` | | `top_k` | int | 采样范围限制 | `50` | --- ### **五、费用与限制** 1. **免费版**: - 3,000次/月 - 每秒2次请求 2. **专业版**($9/月): - 无限次请求 - 优先队列 - 自定义域名 3. **按需计费**: - $0.03/1000次(CPU模型) - $0.15/1000次(GPU模型) --- ### **六、最佳实践** 1. **错误处理**: ```javascript try { const response = await axios.post(...); } catch (error) { if (error.response?.data?.error === "Model is currently loading") { setTimeout(() => retryRequest(), 5000); // 5秒后重试 } } ``` 2. **性能优化**: - 开启`wait_for_model`避免`503`错误 - 使用`options: { use_cache: false }`获取实时结果 3. **安全建议**: - 前端通过`.env`文件存储API密钥: ```env VUE_APP_HF_TOKEN=your_token_here ``` - 敏感操作建议通过Node.js后端代理请求 --- ### **七、适用场景对比** | 场景 | 推荐方案 | 原因 | |------|----------|------| | 快速原型开发 | Inference API | 无需模型部署 | | 高并发生产环境 | 自托管模型 | 成本可控 | | 隐私敏感场景 | 本地部署 | 数据不出本地 | --- ### **八、扩展应用** 1. **结合WebSocket实现实时流式响应** 2. **创建自定义模型端点**(需Pro版) 3. **使用Hugging Face Tasks规范输入格式**(支持60+任务类型) [官方文档参考](https://huggingface.co/docs/api-inference/index) --- 如需具体场景的代码实现(如图像分割、语音识别等),可提供具体需求我会给出针对性示例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值