PaddleOCR特性
支持多种OCR相关前沿算法,在此基础上打造产业级特色模型PP-OCR和PP-Structure,并打通数据生产、模型训练、压缩、预测部署全流程。
PaddleOCR场景应用模型
行业 | 类别 | 亮点 | 文档说明 | 模型下载 |
---|---|---|---|---|
制造 | 数码管识别 | 数码管数据合成、漏识别调优 | 光功率计数码管字符识别 | 下载链接 |
金融 | 通用表单识别 | 多模态通用表单结构化提取 | 多模态表单识别 | 下载链接 |
交通 | 车牌识别 | 多角度图像处理、轻量模型、端侧部署 | 轻量级车牌识别 | 下载链接 |
已支持的文本识别算法列表
算法效果
参考DTRB[3]文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
模型 | 骨干网络 | Avg Accuracy | 模型存储命名 | 下载链接 |
---|---|---|---|---|
Rosetta | Resnet34_vd | 79.11% | rec_r34_vd_none_none_ctc | 训练模型 |
Rosetta | MobileNetV3 | 75.80% | rec_mv3_none_none_ctc | 训练模型 |
CRNN | Resnet34_vd | 81.04% | rec_r34_vd_none_bilstm_ctc | 训练模型 |
CRNN | MobileNetV3 | 77.95% | rec_mv3_none_bilstm_ctc | 训练模型 |
StarNet | Resnet34_vd | 82.85% | rec_r34_vd_tps_bilstm_ctc | 训练模型 |
StarNet | MobileNetV3 | 79.28% | rec_mv3_tps_bilstm_ctc | 训练模型 |
RARE | Resnet34_vd | 83.98% | rec_r34_vd_tps_bilstm_att | 训练模型 |
RARE | MobileNetV3 | 81.76% | rec_mv3_tps_bilstm_att | 训练模型 |
SRN | Resnet50_vd_fpn | 86.31% | rec_r50fpn_vd_none_srn | 训练模型 |
NRTR | NRTR_MTB | 84.21% | rec_mtb_nrtr | 训练模型 |
SAR | Resnet31 | 87.20% | rec_r31_sar | 训练模型 |
SEED | Aster_Resnet | 85.35% | rec_resnet_stn_bilstm_att | 训练模型 |
SVTR | SVTR-Tiny | 89.25% | rec_svtr_tiny_none_ctc_en | 训练模型 |
ViTSTR | ViTSTR | 79.82% | rec_vitstr_none_ce | 训练模型 |
ABINet | Resnet45 | 90.75% | rec_r45_abinet | 训练模型 |
VisionLAN | Resnet45 | 90.30% | rec_r45_visionlan | 训练模型 |
SPIN | ResNet32 | 90.00% | rec_r32_gaspin_bilstm_att | 训练模型 |
RobustScanner | ResNet31 | 87.77% | rec_r31_robustscanner | 训练模型 |
RFL | ResNetRFL | 88.63% | rec_resnet_rfl_att | 训练模型 |