线性代数 粗略笔记 MIT

线性代数粗略笔记

国内的线性代数教得很死板呀,有条件的同学还是尽量听听老外的课吧

第一讲

线性方程组
2x-y=0
3x+4y=0

第一种视角 row picture

第二种视角 column picture

列向量视角是线性代数的核心,该视角将线性方程组看做列向量的线性组合,巧妙地将代数视角变成了几何空间视角

死记硬背的 矩阵x列向量 的乘法,也可以根据这两种视角,容易地理解

老外推荐 按列向量的线性组合视角乘

奇异矩阵,是有无贡献的列向量存在的系数矩阵

Ax=b 是否有解 在列向量线性组合的视角下 等价于 Do the linear combinations of columns fill the space 列向量的线性组合是否能覆盖整个空间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值