[IOI2013]wombats(网格图分治+线段树+决策单调性)

洛谷题目传送门
老话说的好,看见网格图,就想分治
我们对行进行分治
设当前分支节点是k,区间是 l [ k ] l[k] l[k]行到 r [ k ] r[k] r[k]行,他的分治子节点分别是 l s o n [ k ] , r s o n [ k ] lson[k],rson[k] lson[k],rson[k]
对于一个分治节点,我们处理出 f [ k ] [ x ] [ y ] f[k][x][y] f[k][x][y],表示从 ( l [ k ] , x ) (l[k],x) (l[k],x) ( r [ k ] , y ) (r[k],y) (r[k],y)的最短路
合并数组的时候,因为从上至下的路径一定会经过 m i d = ( l + r ) > > 1 mid=(l+r)>>1 mid=(l+r)>>1,也就是分治的中点
那么我们可以枚举这条路径经过第 m i d mid mid行的哪个位置,然后就是从 x x x到这个点+从这个点到 y y y
而这两个东西都是我们已经计算过得
复杂度 O ( m 3 n l o g n ) O(m^3nlogn) O(m3nlogn)
不可能通过
考虑优化,易证明 f f f数组具有二维决策单调性
证明的话,考虑把两条相交的路径分开,一定会更优
具体,设 f [ k ] [ x ] [ y ] f[k][x][y] f[k][x][y]是从 ( m i d , p [ k ] [ x ] [ y ] ) (mid,p[k][x][y]) (mid,p[k][x][y])转移的
那么 p [ k ] [ x − 1 ] [ y ] ≤ p [ k ] [ x ] [ y ] ≤ p [ x ] [ y + 1 ] p[k][x-1][y]\leq p[k][x][y] \leq p[x][y+1] p[k][x1][y]p[k][x][y]p[x][y+1]
复杂度 O ( m 2 n l o g n ) O(m^2nlogn) O(m2nlogn)
时间大概是可以过的,但是空间为 n l o g n m 2 nlognm^2 nlognm2,开不下
考虑对分治的叶子结点分块,也就是当 r − l < B r-l<B rl<B的时候,对这个分治区间暴力做
怎么暴力做呢
枚举最上边一行的起点位置 S S S,设 d i s [ i ] [ j ] dis[i][j] dis[i][j]表示从 S S S ( i , j ) (i,j) (i,j)的最短路
L i n e [ i ] [ j ] Line[i][j] Line[i][j]为从 ( i , j ) (i,j) (i,j)向下连边的边权
那么 f [ i ] [ j ] = m i n ( f [ i − 1 ] [ k ] + L i n e [ i − 1 ] [ k ] + d i s [ ( i , k ) ] [ ( i , j ) ] ) f[i][j]=min(f[i-1][k]+Line[i-1][k]+dis[(i,k)][(i,j)]) f[i][j]=min(f[i1][k]+Line[i1][k]+dis[(i,k)][(i,j)])
后边的拆开之后就可以维护前缀min
做到 O ( n m 2 ) O(nm^2) O(nm2)
总的就能通过了

#include<bits/stdc++.h>
using namespace std;
const int N = 5050,M =207;
typedef long long LL;
const int INF  = 1e9+7; 
int Rgh[N][M],Row[N][M],Dwn[N][M];
int h[M];
int n,m,B=16;
int dis[1090][M][M];
int p[M][M];
void pushup(int rot,int mid)
{
	for(int i=1;i<=m;i++)
	for(int j=1;j<=m;j++)
	p[i][j]=0;
	for(int i=1;i<=m;i++)
	{
		for(int j=m;j>=1;j--)
		{
			int l=1,r=m,wal=INF;
			if(p[i-1][j]) l=max(l,p[i-1][j]);
			if(p[i][j+1]) r=min(r,p[i][j+1]);
			for(int k=l;k<=r;k++)
			{
				int v=dis[rot<<1][i][k]+dis[rot<<1|1][k][j];
				v=v+Dwn[mid][k];
				if(v<wal)
				{
					wal=v;
					p[i][j]=k;
				}
			}
			dis[rot][i][j]=wal;
		}
	}
}
void Upd(int f[M][M],int l,int r)
{
	for(int S=1;S<=m;S++)
	{
		for(int i=1;i<=m;i++)
		h[i]=abs(Row[l][i]-Row[l][S]);
		for(int i=l+1;i<=r;i++)
		{
			for(int j=1;j<=m;j++)
			h[j]+=Dwn[i-1][j];
			int Bet=h[1];
			for(int j=2;j<=m;j++)
			{
				h[j]=min(h[j],Bet+Row[i][j]);
				Bet=min(Bet,h[j]-Row[i][j]);
			}
			Bet=h[m]+Row[i][m];
			for(int j=m-1;j>=1;j--)
			{
				h[j]=min(h[j],Bet-Row[i][j]);
				Bet=min(Bet,h[j]+Row[i][j]);
			}
		}
		for(int i=1;i<=m;i++)
		f[S][i]=h[i];
	}
}
void Build(int k,int l,int r)
{
	if(r-l<=B) 
	{
		Upd(dis[k],l,r);
//		exit(0);
		return;
	}
	int mid=(l+r)>>1;
	Build(k<<1,l,mid);
	Build(k<<1|1,mid+1,r);
	pushup(k,mid);
}
void Updy(int k,int l,int r,int x)
{
	if(r-l<=B)
	{
		Upd(dis[k],l,r);
		return;
	}
	int mid=(l+r)>>1;
	if(x<=mid) Updy(k<<1,l,mid,x);
	else Updy(k<<1|1,mid+1,r,x);
	pushup(k,mid);
}
int main()
{
	cin>>n>>m;
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<m;j++)
		{
			scanf("%d",&Rgh[i][j]);
			Row[i][j+1]=Row[i][j]+Rgh[i][j];
		}
	}
	for(int i=1;i<n;i++)
	for(int j=1;j<=m;j++)
	scanf("%d",&Dwn[i][j]);
	Build(1,1,n);
//	exit(0);
	int q;
	cin>>q;
	while(q--)
	{
		int opt,x,y;
		scanf("%d %d %d",&opt,&x,&y);
		x++;y++;
		if(opt==3) printf("%d\n",dis[1][x][y]);
		else
		{
			int v;
			scanf("%d",&v);
			if(opt==1)
			{
				int det=v-Rgh[x][y];
				Rgh[x][y]=v;
				for(int i=y+1;i<=m;i++)
				Row[x][i]+=det;
				Updy(1,1,n,x);
			}
			else 
			{
				Dwn[x][y]=v;
				Updy(1,1,n,x);
			}
		}
	}
	return 0;
} 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值