进军多项式(三):Chirp Z-Transform

Chirp Z-Transform

题目传送门
给定一个n次多项式 F ( x ) F(x) F(x),对于 i = 0 i=0 i=0 m m m查询 F ( c i ) F(c^i) F(ci)
c c c为常数。

我们推一下式子,
a n s i = ∑ j = 0 n − 1 f j c i j ans_i=\sum_{j=0}^{n-1}f_jc^{ij} ansi=j=0n1fjcij
注意到:
i j = C i + j 2 − C i 2 − C j 2 ij=C_{i+j}^2-C_i^2-C_j^2 ij=Ci+j2Ci2Cj2
a n s i = ∑ j = 0 n − 1 f j c C i + j 2 − C i 2 − C j 2 ans_i=\sum_{j=0}^{n-1}f_jc^{C_{i+j}^2-C_i^2-C_j^2} ansi=j=0n1fjcCi+j2Ci2Cj2
提取 C i 2 C_i^2 Ci2
a n s i = ∑ j = 0 n − 1 f j c C i + j 2 − C i 2 − C j 2 ans_i=\sum_{j=0}^{n-1}f_jc^{C_{i+j}^2-C_i^2-C_j^2} ansi=j=0n1fjcCi+j2Ci2Cj2
a n s i = c − C i 2 ∑ j = 0 n − 1 f j c C i + j 2 − C j 2 ans_i=c^{-C_i^2}\sum_{j=0}^{n-1}f_jc^{C_{i+j}^2-C_j^2} ansi=cCi2j=0n1fjcCi+j2Cj2
右边的式子只和 j , i + j j,i+j j,i+j有关,差卷积即可。
复杂度 O ( ( n + m ) log ⁡ ( m + n ) ) O((n+m)\log (m+n)) O((n+m)log(m+n))

#include<bits/stdc++.h>
using namespace std;
const int N = 8e6+7;
int w[2][N];
int lim;
typedef long long LL;
const int mod = 998244353;
int Pow(int a,int b)
{
	int res=1;
	while(b)
	{
		if(b&1)res=1ll*res*a%mod;
		a=1ll*a*a%mod;
		b>>=1;
	}
	return res;
} 
int G=3,IG=(mod+1)/G;
int o[2];
void init(int n)
{
	lim=1;
	while(lim<=n) lim<<=1;
	o[0]=Pow(G,(mod-1)/lim);
	o[1]=Pow(IG,(mod-1)/lim);
	for(int d=0;d<2;d++)
	{
		w[d][0]=1;
		for(int i=1;i<(lim>>1);i++)
		w[d][i]=1ll*w[d][i-1]*o[d]%mod;
	}
}
inline void DFT(int *f)
{
	for(int k=lim,l=k>>1,r=1;k>=2;k>>=1,l>>=1,r<<=1)
	for(int i=0;i<lim;i+=k)
	for(int j=i,p=0;p<l;j++,p++)
	{
		int u=f[j],v=f[j+l]%mod;
		f[j]=(u+v)%mod;
		f[j+l]=1ll*w[0][p*r]*(u-v+mod)%mod;
	}
} 
inline void IDFT(int *f)
{
	for(int k=2,l=1,r=(lim>>1);k<=lim;k<<=1,l<<=1,r>>=1)
	for(int i=0;i<lim;i+=k)
	for(int j=i,p=0;p<l;j++,p++)
	{
		int u=f[j],v=1ll*w[1][p*r]*f[j+l]%mod;
		f[j]=(u+v)%mod;
		f[j+l]=(u-v+mod)%mod;
	}	
	int inv=Pow(lim,mod-2);
	for(int i=0;i<lim;i++)
	f[i]=1ll*f[i]*inv%mod;
}
int n,m,c;
int f[N],g[N];
inline int C(int x)
{
	return 1ll*x*(x-1)/2%(mod-1);
}
int main()
{
	cin>>n>>c>>m;
	init((n+m-1)<<1);
	for(int i=0;i<n;i++)
	{
		scanf("%d",&f[i]);
		f[i]=1ll*f[i]*Pow(c,mod-1-C(i))%mod;
	}
	for(int i=0;i<n+m;i++)
	g[i]=Pow(c,C(i))%mod;
	reverse(f,f+n);
	DFT(f);DFT(g);
	for(int i=0;i<lim;i++)
	f[i]=1ll*f[i]*g[i]%mod;
	IDFT(f);
	for(int i=0;i<m;i++)
	printf("%lld ",1ll*f[n+i-1]*Pow(c,mod-1-C(i))%mod);

	return 0;
}

例题

任意模数Chirp Z-Transform

把NTT换成MTT或者三模NTT就好了。
但是注意实现的细节,这玩意卡时间也卡空间。

CF1054H Epic Convolution

A i = ∑ j = 0 [ j 2 ≡ i (mod 490018) ] a j A_i=\sum_{j=0}[j^2\equiv i \text{(mod 490018)}]a_j Ai=j=0[j2i(mod 490018)]aj, B i = ∑ j = 0 [ j 3 ≡ i (mod 490018) ] b j B_i=\sum_{j=0}[j^3\equiv i \text{(mod 490018)} ]b_j Bi=j=0[j3i(mod 490018)]bj
这里上界减一是因为扩展欧拉定理。
那么答案即为
∑ i = 0 490017 ∑ j = 0 490017 A i B j c i j \sum_{i=0}^{490017}\sum_{j=0}^{490017}A_iB_jc^{ij} i=0490017j=0490017AiBjcij
提取 i i i
∑ i = 0 490017 A i ∑ j = 0 490017 B j c i j \sum_{i=0}^{490017}A_i\sum_{j=0}^{490017}B_jc^{ij} i=0490017Aij=0490017Bjcij
F ( x ) = ∑ i B i x i F(x)=\sum_i B_ix^i F(x)=iBixi
那么就是

∑ i = 0 490017 A i F ( c i ) \sum_{i=0}^{490017}A_i F(c^i) i=0490017AiF(ci)
上板子就好了。
但是要写任模。

拓展

Bluestein’s Algorithm \text{Bluestein’s Algorithm} Bluestein’s Algorithm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值