Chirp Z-Transform
题目传送门
给定一个n次多项式
F
(
x
)
F(x)
F(x),对于
i
=
0
i=0
i=0到
m
m
m查询
F
(
c
i
)
F(c^i)
F(ci)
c
c
c为常数。
我们推一下式子,
a
n
s
i
=
∑
j
=
0
n
−
1
f
j
c
i
j
ans_i=\sum_{j=0}^{n-1}f_jc^{ij}
ansi=j=0∑n−1fjcij
注意到:
i
j
=
C
i
+
j
2
−
C
i
2
−
C
j
2
ij=C_{i+j}^2-C_i^2-C_j^2
ij=Ci+j2−Ci2−Cj2
a
n
s
i
=
∑
j
=
0
n
−
1
f
j
c
C
i
+
j
2
−
C
i
2
−
C
j
2
ans_i=\sum_{j=0}^{n-1}f_jc^{C_{i+j}^2-C_i^2-C_j^2}
ansi=j=0∑n−1fjcCi+j2−Ci2−Cj2
提取
C
i
2
C_i^2
Ci2
a
n
s
i
=
∑
j
=
0
n
−
1
f
j
c
C
i
+
j
2
−
C
i
2
−
C
j
2
ans_i=\sum_{j=0}^{n-1}f_jc^{C_{i+j}^2-C_i^2-C_j^2}
ansi=j=0∑n−1fjcCi+j2−Ci2−Cj2
a
n
s
i
=
c
−
C
i
2
∑
j
=
0
n
−
1
f
j
c
C
i
+
j
2
−
C
j
2
ans_i=c^{-C_i^2}\sum_{j=0}^{n-1}f_jc^{C_{i+j}^2-C_j^2}
ansi=c−Ci2j=0∑n−1fjcCi+j2−Cj2
右边的式子只和
j
,
i
+
j
j,i+j
j,i+j有关,差卷积即可。
复杂度
O
(
(
n
+
m
)
log
(
m
+
n
)
)
O((n+m)\log (m+n))
O((n+m)log(m+n))
#include<bits/stdc++.h>
using namespace std;
const int N = 8e6+7;
int w[2][N];
int lim;
typedef long long LL;
const int mod = 998244353;
int Pow(int a,int b)
{
int res=1;
while(b)
{
if(b&1)res=1ll*res*a%mod;
a=1ll*a*a%mod;
b>>=1;
}
return res;
}
int G=3,IG=(mod+1)/G;
int o[2];
void init(int n)
{
lim=1;
while(lim<=n) lim<<=1;
o[0]=Pow(G,(mod-1)/lim);
o[1]=Pow(IG,(mod-1)/lim);
for(int d=0;d<2;d++)
{
w[d][0]=1;
for(int i=1;i<(lim>>1);i++)
w[d][i]=1ll*w[d][i-1]*o[d]%mod;
}
}
inline void DFT(int *f)
{
for(int k=lim,l=k>>1,r=1;k>=2;k>>=1,l>>=1,r<<=1)
for(int i=0;i<lim;i+=k)
for(int j=i,p=0;p<l;j++,p++)
{
int u=f[j],v=f[j+l]%mod;
f[j]=(u+v)%mod;
f[j+l]=1ll*w[0][p*r]*(u-v+mod)%mod;
}
}
inline void IDFT(int *f)
{
for(int k=2,l=1,r=(lim>>1);k<=lim;k<<=1,l<<=1,r>>=1)
for(int i=0;i<lim;i+=k)
for(int j=i,p=0;p<l;j++,p++)
{
int u=f[j],v=1ll*w[1][p*r]*f[j+l]%mod;
f[j]=(u+v)%mod;
f[j+l]=(u-v+mod)%mod;
}
int inv=Pow(lim,mod-2);
for(int i=0;i<lim;i++)
f[i]=1ll*f[i]*inv%mod;
}
int n,m,c;
int f[N],g[N];
inline int C(int x)
{
return 1ll*x*(x-1)/2%(mod-1);
}
int main()
{
cin>>n>>c>>m;
init((n+m-1)<<1);
for(int i=0;i<n;i++)
{
scanf("%d",&f[i]);
f[i]=1ll*f[i]*Pow(c,mod-1-C(i))%mod;
}
for(int i=0;i<n+m;i++)
g[i]=Pow(c,C(i))%mod;
reverse(f,f+n);
DFT(f);DFT(g);
for(int i=0;i<lim;i++)
f[i]=1ll*f[i]*g[i]%mod;
IDFT(f);
for(int i=0;i<m;i++)
printf("%lld ",1ll*f[n+i-1]*Pow(c,mod-1-C(i))%mod);
return 0;
}
例题
任意模数Chirp Z-Transform
把NTT换成MTT或者三模NTT就好了。
但是注意实现的细节,这玩意卡时间也卡空间。
CF1054H Epic Convolution
设
A
i
=
∑
j
=
0
[
j
2
≡
i
(mod 490018)
]
a
j
A_i=\sum_{j=0}[j^2\equiv i \text{(mod 490018)}]a_j
Ai=∑j=0[j2≡i(mod 490018)]aj,
B
i
=
∑
j
=
0
[
j
3
≡
i
(mod 490018)
]
b
j
B_i=\sum_{j=0}[j^3\equiv i \text{(mod 490018)} ]b_j
Bi=∑j=0[j3≡i(mod 490018)]bj
这里上界减一是因为扩展欧拉定理。
那么答案即为
∑
i
=
0
490017
∑
j
=
0
490017
A
i
B
j
c
i
j
\sum_{i=0}^{490017}\sum_{j=0}^{490017}A_iB_jc^{ij}
i=0∑490017j=0∑490017AiBjcij
提取
i
i
i,
∑
i
=
0
490017
A
i
∑
j
=
0
490017
B
j
c
i
j
\sum_{i=0}^{490017}A_i\sum_{j=0}^{490017}B_jc^{ij}
i=0∑490017Aij=0∑490017Bjcij
设
F
(
x
)
=
∑
i
B
i
x
i
F(x)=\sum_i B_ix^i
F(x)=∑iBixi
那么就是
∑
i
=
0
490017
A
i
F
(
c
i
)
\sum_{i=0}^{490017}A_i F(c^i)
i=0∑490017AiF(ci)
上板子就好了。
但是要写任模。
拓展
Bluestein’s Algorithm \text{Bluestein’s Algorithm} Bluestein’s Algorithm