音频信号处理-降噪方法整理

本文探讨了谱减和维纳滤波等传统语音降噪方法,以及它们在噪声估计和相位处理上的挑战。提到了Webrtc降噪方案对特定类型噪声的良好抑制,但低信噪比和瞬变噪声场景下效果不佳。同时,介绍了深度学习如RNNoise在降噪领域的应用,强调了数据增强和模型泛化能力的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

谱减 

噪音谱是静态 

依赖对于估计噪声的准确性 由于存在频点估计误差,导致相应频点移植过多或过少,形成谱峰(音乐噪声)估计噪声进行平滑处理,平滑的增益要和SNR成正比

根据非语音段估计得到噪声的幅度谱 通过谱减后的语音谱 进行傅里叶逆变换

维纳滤波 

会残留白噪声

从带噪语音端中减去经过维纳滤波后的降噪分量幅度谱,使用带噪语音相位,最后傅里叶逆变换

使用MMSE(最小均方误差)准则迭代维纳滤波器中噪声抑制系数 来降噪 

对噪声的估计方法:VAD、全局幅度最小原理、矩阵奇异值分解原理

子空间法 由于实时性差,实际情况下,噪音和语音子空间并不满足正交性,导致最终降噪效果比较差

webrtc 降噪 (核心基于维纳滤波)

对似然比函数进行改进,将多个语音/噪声分类特征组合在一起形成多特征概率密度声源分类模型。对于风扇,电器类噪音,抑制效果很好,对于低信噪比,和瞬变噪声场景效果不佳

深度学习降噪

rnnoise 比 sppex效果好 数据增强方法扩充训练集 降噪效果取决于 训练集中没有相关场景的噪音模型泛化念能力不够

或者选择不同网络结构 

DCUNet 增强了网络的感知能力 

相位信息影响的是语音质量而非可懂度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芒果木有籽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值