图形几何变换基础

规范化齐次坐标

齐次坐标就是用n+1维矢量表示n维矢量。例如,在二维平面中,点P(x,y)的齐次坐标表示为(wx,wy,w)。类似地,在三维空间中,点P(x,y,z)的齐次坐标表示为(wx,wy,wz,w)。
w=1就是规范化的齐次坐标。二维点P(x,y)的规范化齐次坐标为〔x,y,1〕,三维点P(x,y,z)的规范化齐次坐标为(x,y,z,1)。
定义了规范化齐次坐标以后,图形几何变换可以表示为图形顶点集合的规范化齐次坐标矩阵与某一变换矩阵相乘的形式。

矩阵相乘

由线性代数知道,矩阵乘法不满足交换律,只有左矩阵的列数等于右矩阵的行数时,两个矩阵才可以相乘。

二维几何变换矩阵

用规范化齐次坐标表示的二维基本几何变换矩阵是一个3×3的方阵,简称为二维变换矩阵。
这里写图片描述
从功能上可以把二维变换矩阵T分为4个子矩阵。其中
这里写图片描述

物体变换与坐标变换

同一种变换可以看作是物体变换,也可以看作是坐标变换。物体变换是使用同一变换矩阵作用于物体上的所有顶点,但坐标系位置不发生改变。坐标变换是坐标系发生变换,但物体位置不发生改变,然后在新坐标系下表示物体上的所有顶点。这两种变换紧密联系,各有各的优点,只是变换矩阵略有差异而已

二维几何变换

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值