计蒜客 - 旋转数字
蒜头君发现了一个很好玩的事情,他对一个数作旋转操作,把该数的最后的数字移动到最前面。比如,数 123123 可以得到 312, 231, 123312,231,123,这样就可以得到很多个数。
现在,蒜头君的问题是这些数中,有多少个不同的数小于原数,多少个等于原数,多少个大于原数。
旋转中可能会出现前导零,两数比较的时候可以忽略前导零的影响。
输入格式
输入一个整数 N ( 0 < N ≤ 1 0 100000 ) N(0 < N\leq 10^{100000}) N(0<N≤10100000)。
341
输出格式
答案在一行中输出三个整数,分别是小于 N,等于 N,大于 N 的个数,中间以空格隔开。
1 1 1
这道题是一道利用拓展 KMP 算法的好题目。
我们一点一点来剖析这道题。
第一个问题,怎么枚举出所有旋转得到的数字?
把数字收尾相接,然后从第 0 个位置到第 length 个位置,每次往后取 length 个长度的字符,就可以遍历出所有可能的 length 个数字。
char num[MAX_LEN];
scanf("%s", num);
int len = strlen(num);
char* numnum = duplicate(num);
for (int i = 0; i < len; i++) {
for (int j = i; j < i + len; j++) {
printf("%c", numnum[j]);
}
printf("\n");
}
char* concat(const char* s1, const char* s2) {
int len1 = strlen(s1);
int len2 = strlen(s2);
char* s3 = (char*)malloc(sizeof(char) * (len1 + len2 + 1));
strncpy(s3, s1, len1);
strncpy(s3 + len1, s2, len2);
s3[len1 + len2] = '\0';
return s3;
}
char* duplicate(const char* s) {
return concat(s, s);
}
第二个问题,怎么比较大小?
由于数字非常大,我们不可能每次都转成整型以后去比较大小,而利用字符串相等来比较数字之间的大小,是一种常用的做法。
首先让我们考虑怎么比较两个数字相等,显然,那就是这两个字符串相等,即 strcmp(s1, s2) == 0
,对应到 KMP 算法中,那就是 next[s[i]] = length
。
parseInt(s1) === parseInt(s2)
// 等价于
s1 === s2
当然,这里忽略了前导零,因为 s1 = '001'
和 s2 = '01'
,显然 parseInt(s1) === parseInt(s2)
是成立的,但是 s1 === s2
是不成立的。
可是,由于题目要求的是不同的数字,所以我们不需要考虑重复数字,那么,在这种情况下,与原数相等的数字就只有