菜品推荐系统推荐算法的实现

本文介绍了作者在校园美食推荐系统中,通过用户评分、评论和收藏行为调整推荐维度权重的算法。包括系统架构、权重设计、用户行为模拟、动态权重更新以及精度、召回率和F1Score的评估。通过实际用户数据测试,展示了算法的有效性。
摘要由CSDN通过智能技术生成

文章目录

    • 概要
    • 推荐算法实现
    • 实现结果
    • 总结与感悟
    • 提问与建议

1 概要

本报告旨在介绍我在校园美食推荐系统中推荐算法的实现,主要任务是实现用户行为反馈动态调整推荐维度的权重。

2 整体架构流程

2.1 系统架构

推荐系统的整体架构包括数据存储、用户行为记录和推荐算法模块。数据存储采用关系型数据库,用户行为记录模块记录用户ID、菜品ID、评分、是否收藏等信息。推荐算法模块负责计算推荐得分。

class RecommendationSystem:
    def __init__(self, database, behavior_recorder, recommendation_algorithm):
        self.database = database
        self.behavior_recorder = behavior_recorder
        self.recommendation_algorithm = recommendation_algorithm

2.2 推荐维度和权重设计

推荐维度包括用户评分、评论数量、收藏状态。初始权重设定为{'rating': 0.6, 'comment': 0.3, 'favorite': 0.1},表示评分占60%,评论数量占30%,收藏状态占10%。

class RecommendationAlgorithm:
    def __init__(self, initial_weights):
        self.weights = initial_weights

2.3 用户行为模拟

用户行为数据通过模拟用户ID、菜品ID、评分、是否收藏等信息。通过记录这些信息,模拟了用户在系统中的行为。

class BehaviorRecorder:
    def __init__(self):
        self.user_behavior_data = []

    def record_user_behavior(self, user_id, item_id, rating, is_favorite):
        self.user_behavior_data.append({'user_id': user_id, 'item_id': item_id, 'rating': rating, 'is_favorite': is_favorite})

2.4 动态权重调整

权重的调整采用均匀分配用户评分和收藏的数量的方式,动态调整推荐维度的权重。

class RecommendationAlgorithm:
    def update_weights(self, user_behavior_data):
        total_rating = sum(behavior['rating'] for behavior in user_behavior_data)
        total_favorite = sum(1 for behavior in user_behavior_data if behavior['is_favorite'])

        self.weights['rating'] = total_rating / len(user_behavior_data)
        self.weights['favorite'] = total_favorite / len(user_behavior_data)

2.5 精度和召回率的评估

2.5.1 精度表示推荐的物品中有多少是用户实际感兴趣的。

定义真实用户感兴趣的物品集合。:这可以是用户已经评分过的、评论过的,或者收藏过的菜品集合。

使用推荐算法为用户生成推荐列表:这是系统推荐给用户的菜品列表。

计算精度:将推荐列表中与真实感兴趣物品集合相匹配的物品数除以总的推荐物品数。

2.5.2 召回率表示用户实际感兴趣的物品在系统推荐列表中被发现的比例。

定义真实用户感兴趣的物品集合:这可以是用户已经评分过的、评论过的,或者收藏过的菜品集合。

使用推荐算法为用户生成推荐列表:是系统推荐给用户的菜品列表。

计算召回率:将推荐列表中与真实感兴趣物品集合相匹配的物品数除以用户感兴趣的总物品数。

2.5.3 F1Score

F1 Score是综合考虑精度和召回率的指标。

F1 Score可以帮助平衡精度和召回率之间的权衡。

在实际应用中,可以采用交叉验证、离线测试集等方式,将系统推荐的结果与真实用户行为进行比较,从而得出精度、召回率等评估指标。

3 实现结果

3.1 测试数据和评估

为了测试推荐系统的有效性,采用实际用户行为数据集进行测试。通过精度、召回率等指标对推荐算法的性能进行了评估。

3.2 示例演示

通过示例演示,用户在系统中进行了评分和收藏后,推荐结果发生了相应的变化,验证了推荐算法的有效性。

4 总结与感悟

4.1 总结 

在这个任务中,我深入了解了推荐算法的实现原理,掌握了用户行为对推荐结果的影响。

4.2 困难与解决

例如权重的动态调整方式选择。通过仔细思考和实验,成功解决了这些问题。

5 提问与建议

5.1 提问

我的推荐算法中采用了简单的均匀分配方式调整权重,老师是否有更好的方式建议?

在实际应用中,有哪些因素可能影响用户行为反馈的准确性,您有什么建议?

###代码

# Your key code
# 2.4 示例代码 - 动态权重调整
class RecommendationAlgorithm:
    def update_weights(self, user_behavior_data):
        total_rating = sum(behavior['rating'] for behavior in user_behavior_data)
        total_favorite = sum(1 for behavior in user_behavior_data if behavior['is_favorite'])

        self.weights['rating'] = total_rating / len(user_behavior_data)
        self.weights['favorite'] = total_favorite / len(user_behavior_data)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值