搭建RAGFlow

RAGFlow 是一款基于深度文档理解构建的开源 RAG(Retrieval-Augmented Generation)引擎。RAGFlow 可以为各种规模的企业及个人提供一套精简的 RAG 工作流程,结合大语言模型(LLM)针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用。 

前提条件

  • CPU >= 4 核
  • RAM >= 16 GB
  • Disk >= 50 GB
  • Docker >= 24.0.0 & Docker Compose >= v2.26.1

    如果你并没有在本机安装 Docker(Windows、Mac,或者 Linux), 可以参考文档 Install Docker Engine 自行安装。

🚀 启动服务器

  1. 确保 vm.max_map_count 不小于 262144:

    如需确认 vm.max_map_count 的大小:

    $ sysctl vm.max_map_count

    如果 vm.max_map_count 的值小于 262144,可以进行重置:

    # 这里我们设为 262144:
    $ sudo sysctl -w vm.max_map_count=262144

    你的改动会在下次系统重启时被重置。如果希望做永久改动,还需要在 /etc/sysctl.conf 文件里把 vm.max_map_count 的值再相应更新一遍:

    vm.max_map_count=262144
  2. 克隆仓库:

    $ git clone https://github.com/infiniflow/ragflow.git
  3. 进入 docker 文件夹,利用提前编译好的 Docker 镜像启动服务器:

    运行以下命令会自动下载 dev 版的 RAGFlow slim Docker 镜像(dev-slim),该镜像并不包含 embedding 模型以及一些 Python 库,因此镜像大小约 1GB。

    $ cd ragflow/docker
    $ docker compose -f docker-compose.yml up -d
    • 如果你想下载并运行特定版本的 RAGFlow slim Docker 镜像,请在 docker/.env 文件中找到 RAGFLOW_IMAGE 变量,将其改为对应版本。例如 RAGFLOW_IMAGE=infiniflow/ragflow:v0.13.0-slim,然后再运行上述命令。
    • 如果您想安装内置 embedding 模型和 Python 库的 dev 版本的 Docker 镜像,需要将 docker/.env 文件中的 RAGFLOW_IMAGE 变量修改为: RAGFLOW_IMAGE=infiniflow/ragflow:dev
    • 如果您想安装内置 embedding 模型和 Python 库的指定版本的 RAGFlow Docker 镜像,需要将 docker/.env 文件中的 RAGFLOW_IMAGE 变量修改为: RAGFLOW_IMAGE=infiniflow/ragflow:v0.13.0(当前改的这个)。修改后,再运行上面的命令。 注意: 安装内置 embedding 模型和 Python 库的指定版本的 RAGFlow Docker 镜像大小约 9 GB,可能需要更长时间下载,请耐心等待。
  4. 服务器启动成功后再次确认服务器状态:

    $ docker logs -f ragflow-server

    出现以下界面提示说明服务器启动成功:

         ____   ___    ______ ______ __               
        / __ \ /   |  / ____// ____// /____  _      __
       / /_/ // /| | / / __ / /_   / // __ \| | /| / /
      / _, _// ___ |/ /_/ // __/  / // /_/ /| |/ |/ / 
     /_/ |_|/_/  |_|\____//_/    /_/ \____/ |__/|__/  
    
     * Running on all addresses (0.0.0.0)
     * Running on http://127.0.0.1:9380
     * Running on http://x.x.x.x:9380
     INFO:werkzeug:Press CTRL+C to quit

    如果您跳过这一步系统确认步骤就登录 RAGFlow,你的浏览器有可能会提示 network anormal 或 网络异常,因为 RAGFlow 可能并未完全启动成功。

  5. 在你的浏览器中输入你的服务器对应的 IP 地址并登录 RAGFlow。

    上面这个例子中,您只需输入 http://IP_OF_

### 安装和配置 RAGFlow #### 准备工作 为了确保顺利安装和配置 RAGFlow,建议先确认 CentOS 7 的环境已经更新至最新状态。这可以通过执行 `yum update` 命令来完成。 #### 下载并安装依赖项 RAGFlow 需要特定版本的 Python 和其他软件包的支持。可以按照如下命令安装必要的依赖: ```bash sudo yum install python3-pip git pip3 install --upgrade pip setuptools wheel ``` #### 获取 RAGFlow 源码 从 GitHub 或者其他的托管平台上克隆最新的 RAGFlow 仓库到本地机器上: ```bash git clone https://github.com/user/RAGFlow.git cd RAGFlow ``` #### 创建虚拟环境 (可选) 创建一个新的 Python 虚拟环境有助于隔离项目所需的库和其他全局安装之间的冲突: ```bash python3 -m venv ragflow_env source ragflow_env/bin/activate ``` #### 安装Python依赖 进入 RAGFlow 文件夹后,使用 Pip 来安装所有必需的 Python 库: ```bash pip install -r requirements.txt ``` #### 修改 Ollama 设置以便外部访问 由于 ollama 默认仅监听 localhost 接口,对于希望让远程客户端也能连接的情况,则需编辑 `/etc/systemd/system/ollama.service` 文件,在 Environment 变量后面追加 `"OLLAMA_HOST=0.0.0.0:11434"` 参数[^3]。之后记得重新加载守护进程配置并重启服务: ```bash systemctl daemon-reload systemctl restart ollama.service ``` #### 进一步设置与调试 如果有任何组件无法正常运作或者遇到了错误提示,请查阅官方文档获取更详细的指导说明[^1];另外也可以参考 MySQL 在 Centos7 环境下可能出现的问题及其解决方案作为辅助参考资料[^2]。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值