RAGFlow 是一款基于深度文档理解构建的开源 RAG(Retrieval-Augmented Generation)引擎。RAGFlow 可以为各种规模的企业及个人提供一套精简的 RAG 工作流程,结合大语言模型(LLM)针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用。
前提条件
- CPU >= 4 核
- RAM >= 16 GB
- Disk >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
如果你并没有在本机安装 Docker(Windows、Mac,或者 Linux), 可以参考文档 Install Docker Engine 自行安装。
🚀 启动服务器
-
确保
vm.max_map_count
不小于 262144:如需确认
vm.max_map_count
的大小:$ sysctl vm.max_map_count
如果
vm.max_map_count
的值小于 262144,可以进行重置:# 这里我们设为 262144: $ sudo sysctl -w vm.max_map_count=262144
你的改动会在下次系统重启时被重置。如果希望做永久改动,还需要在 /etc/sysctl.conf 文件里把
vm.max_map_count
的值再相应更新一遍:vm.max_map_count=262144
-
克隆仓库:
$ git clone https://github.com/infiniflow/ragflow.git
-
进入 docker 文件夹,利用提前编译好的 Docker 镜像启动服务器:
运行以下命令会自动下载 dev 版的 RAGFlow slim Docker 镜像(
dev-slim
),该镜像并不包含 embedding 模型以及一些 Python 库,因此镜像大小约 1GB。$ cd ragflow/docker $ docker compose -f docker-compose.yml up -d
- 如果你想下载并运行特定版本的 RAGFlow slim Docker 镜像,请在 docker/.env 文件中找到
RAGFLOW_IMAGE
变量,将其改为对应版本。例如RAGFLOW_IMAGE=infiniflow/ragflow:v0.13.0-slim
,然后再运行上述命令。 - 如果您想安装内置 embedding 模型和 Python 库的 dev 版本的 Docker 镜像,需要将 docker/.env 文件中的
RAGFLOW_IMAGE
变量修改为:RAGFLOW_IMAGE=infiniflow/ragflow:dev
。 - 如果您想安装内置 embedding 模型和 Python 库的指定版本的 RAGFlow Docker 镜像,需要将 docker/.env 文件中的
RAGFLOW_IMAGE
变量修改为:RAGFLOW_IMAGE=infiniflow/ragflow:v0.13.0(当前改的这个)
。修改后,再运行上面的命令。 注意: 安装内置 embedding 模型和 Python 库的指定版本的 RAGFlow Docker 镜像大小约 9 GB,可能需要更长时间下载,请耐心等待。
- 如果你想下载并运行特定版本的 RAGFlow slim Docker 镜像,请在 docker/.env 文件中找到
-
服务器启动成功后再次确认服务器状态:
$ docker logs -f ragflow-server
出现以下界面提示说明服务器启动成功:
____ ___ ______ ______ __ / __ \ / | / ____// ____// /____ _ __ / /_/ // /| | / / __ / /_ / // __ \| | /| / / / _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ / /_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/ * Running on all addresses (0.0.0.0) * Running on http://127.0.0.1:9380 * Running on http://x.x.x.x:9380 INFO:werkzeug:Press CTRL+C to quit
如果您跳过这一步系统确认步骤就登录 RAGFlow,你的浏览器有可能会提示
network anormal
或网络异常
,因为 RAGFlow 可能并未完全启动成功。 -
在你的浏览器中输入你的服务器对应的 IP 地址并登录 RAGFlow。
上面这个例子中,您只需输入 http://IP_OF_