Deep Residual Learning for Image Recognition 这篇论文已很有名
参考了大家阅读后的看法http://www.jianshu.com/p/e58437f39f65,也想聊聊自己阅读后的理解
网络深度是影响深度卷积神经网络性能的一大因素,但是研究者发现当网络不断加深时,训练的结果并不好。这不是因为过拟合,因为过拟合的话应该是训练集上结果好,测试集不好,但深度网络出现的现象是训练集上的效果就不好。而且这种现象还会随着深度加深而变差。这并不符合逻辑,因为深层网络在训练时,可以是在浅层网络的函数上加上一个恒等变换。而深层网络显然没有把这种恒等变换学习到。因此,提出了Resnet。
网络结构是有好多个block组成,每个block的构成如下图,加入了一个shortcut connections 从函数上来看就是加入了一个恒等变换。
从正向传播上来看,引入恒等变换可以使网络参数调整作用更大。这个地方引用下知乎上一个特别好的回答(http://www.jianshu.com/p/e58437f39f65)
“F是求和前网络映射,H是从输入到求和后的网络映射。比如把5映射到5.1,那么引入残差前是F'(5)=5.1,引入残差后是H(5)=5.1, H(5)=F(5)+5, F(5)=0.1。这里的F'和F都表示网络参数映射&#x